ADVANCED MATHEMATICS FORM 5 – INTEGRATION

Share this post on:


Integration :Is the reverse process of differentiation, i.e. the process of finding the expression for y in terms of x when given the gradient function.

The symbol for integration isedu.uptymez.com, denote the integrate of a function with respect to x

If edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

This is the general power of integration it works for all values of n except for n = -1

Example

1.      edu.uptymez.com

2.       Integrate the following with respect to x
(i)3x2

Solution

edu.uptymez.com

edu.uptymez.com

            Integration of constant

The result for differentiating c x is c

edu.uptymez.com

            Properties

(1)  edu.uptymez.com

(2)  edu.uptymez.com

Integration by change of variables

If x is replaced by a linear function of x, say of the form ax + b, integration by change of variables will be applied
E.g.     edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Considering edu.uptymez.comin similar way gives the general result

         edu.uptymez.com

Example

Find the integral of the following

            a) (3x – 8) 6              b) edu.uptymez.com

Solution (a)

 edu.uptymez.com

edu.uptymez.com

Solution (b)

edu.uptymez.com

edu.uptymez.com

            → If edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Example

1.   Find  edu.uptymez.com

            Solution

edu.uptymez.com
edu.uptymez.com

2.   Find edu.uptymez.com

            Solution

edu.uptymez.com

Integration of exponential function

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Example 01

edu.uptymez.com

            Solution

edu.uptymez.com

Alternative

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Example 02

edu.uptymez.com

Solution

edu.uptymez.com

Alternative

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Integrating fraction

If  edu.uptymez.com

Differentiating with respect to x gives

            edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

Example

1.   edu.uptymez.com,given that f(x)=x2+1

Solution

edu.uptymez.com

2.      Find edu.uptymez.com

solution

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Note: 2x  is the derivative of x2 + 1 in this case substitution is useful

           i.e. let u = x2 + 1

edu.uptymez.com

   This converts into the form     edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.comedu.uptymez.com

Standard integrals

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com→∫sec x tan xdx=sec x+c

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com

·        edu.uptymez.com
·       edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com


·        edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EXERCISE

Find the integral of the following functions

edu.uptymez.comi)   edu.uptymez.com

ii)   edu.uptymez.com

iii)  edu.uptymez.com

iv)  edu.uptymez.com

Integration by partial fraction

Integration by partial fraction is applied only for proper fraction

E.g.  edu.uptymez.com

Note that:

 The expression is not in standard integrals

edu.uptymez.com

edu.uptymez.com


edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example 01

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example 02

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Improper fraction

If the degree of numerator is equal or greater than of denominator, adjustment must be made

Example

1.      Find  edu.uptymez.com

Solution

 Both numerator and denominator have the degree of 2

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

2.      edu.uptymez.com

edu.uptymez.com

3.      edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

If the denominator doesn’t factorize, splitting the numerator will work

→ Numerator = A (derivative of denominator) + B

Example

edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

           
Important

It can be shown that

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EXERCISE

                                I.            edu.uptymez.com

                             II.            edu.uptymez.com

                           III.            edu.uptymez.com

Integrated of the form

edu.uptymez.com

Note that:

1. If the denominator has two real roots use partial fraction

2. If the denominator has one repeated root use change of variable or recognition

3. If the denominator has no real roots, use completing the square

E.g.

                                I.            edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

                             II.      edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

                           III.     edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

Integral of the form

edu.uptymez.com

Example
edu.uptymez.com

edu.uptymez.com

Then hyperbolic function identities is identities is used edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Note that:

If the quadratic has 1 represented root, it is easier

E.g.

edu.uptymez.com
edu.uptymez.com

EXERCISE

Find the following

     i.      edu.uptymez.com

     ii.    edu.uptymez.com

     iii.   edu.uptymez.com

     iv.   edu.uptymez.com

     v.    edu.uptymez.com

Share this post on: