ADVANCED MATHEMATICS FORM 6 – COMPLEX NUMBER

Share this post on:

The solution of a quadratic equation edu.uptymez.comcan be obtained by the formula.

edu.uptymez.com

Example

i) If edu.uptymez.comedu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

This is straight forward enough.

ii) If edu.uptymez.comedu.uptymez.com
edu.uptymez.com

In fact edu.uptymez.com cannot be represented by an ordinary number.

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Similarly,

edu.uptymez.com
edu.uptymez.com

Then from the equation that we have been solving it gives that

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Since edu.uptymez.com stand for edu.uptymez.comedu.uptymez.com
edu.uptymez.com

Note that edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

The power of edu.uptymez.com reduces to one of

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

It can be deduced that

Numbers of the form edu.uptymez.com,where a and b are real numbers are called complex numbers.

Note that edu.uptymez.comcannot be combined any further

In such expression

A is called the real part of a complex number

B is called imaginary part of a complex number (NOT edu.uptymez.com)

Complex number = (real part) + (imaginary part)


OPERATION ON COMPLEX NUMBERS

ADDITION AND SUBTRACTION

Examples:

1. edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com

2.  edu.uptymez.com

    Solution

edu.uptymez.com
edu.uptymez.com

So in general edu.uptymez.com

EXERCISE

I. edu.uptymez.com

II. edu.uptymez.com 

MULTIPLICATION OF COMPLEX NUMBERS

Example:
1.
   edu.uptymez.com
Solution

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

2.   edu.uptymez.com

 Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

3.   edu.uptymez.com

edu.uptymez.com

             = 13

Any pair of complex numbers of the form edu.uptymez.com has a product which is real.

i.e.

edu.uptymez.com
edu.uptymez.com

Such complex numbers are said to be conjugate

Each is a conjugate of the other.

Hence

edu.uptymez.com

i.e.

.if edu.uptymez.com then the conjugate is edu.uptymez.com

A division will be done by multiplying numerator and denominator the conjugate of the denominator.

Example

edu.uptymez.com

For division, the numerator and denominator both will be multiplied by the conjugate of the denominator.

i.e. 

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

NOTE: – The complex number is zero if and only if the real term and the imaginary term are each zero.
– The real term is given first even when is negative

i.e. 

edu.uptymez.com

Suppose

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Thus two complex numbers are equal if and only if the real terms and the imaginary terms are separately equal.

Example:

Find the value of x and y if

a) edu.uptymez.com

Solution

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

b) edu.uptymez.com 

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS

Consider the reference line denoted by XX1 and YY1

edu.uptymez.com

i) x- axis represents real number (i.e. XX1 is called real axis

ii) y- axis represents imaginary number (YY1 is called imaginary axis

ARGAND DIAGRAM

If edu.uptymez.com is a complex number this can be represented by the line edu.uptymez.com where P is the point (x, y)
edu.uptymez.com

This graphical representation constitutes an Argand diagram

Example:

Draw an Argand diagram to represent the vectors

i) edu.uptymez.com

ii) edu.uptymez.com

Z is often used to denote a complex

Solution

Using the same XY – plane

edu.uptymez.com

Share this post on: