MATHEMATICS FORM 4 – TRIGONOMETRY

Share this post on:

 
  

Trigonometrical ratios in a unit circle

The three trigonometrical ratios of sine, cosine and tangent have been defined earlier, using the sides of a right-angled triangle as follows
 
If A is an angle as shown

edu.uptymez.com

Consider a circle of units subdivided into four congruent sectors of the coordinate axes whose origin is at the center of the circle as shown below.
 
 Let ø be any acute angle (0 < ø < 900) and let P with coordinates (x, y) be the point where OP intersect with the circle then
               
                          
edu.uptymez.com

                                                            

                            edu.uptymez.com

        SIGNS OF THE TRIGONOMETRICAL RATIOS

 The trigonometrical ratios can be  positive or negative depending on the size of the angle and the quadrant in which the angle is found.

 The results obtained are illustrated below. There results will be a help in determining whether sine, cosine and tangent of an angle is positive or negative.

edu.uptymez.com

 
 

Obtuse angle 900<θ<1800

Sin (180-θ)0 = y

Cos (180-θ)0 = – x

Tan (180-θ)0 = – edu.uptymez.com

edu.uptymez.com

 
 

Sin θ = edu.uptymez.com      =  edu.uptymez.com

 
 

Cos θ = edu.uptymez.com     =   edu.uptymez.com
            
Tan θ = edu.uptymez.com   = edu.uptymez.com
             
Tan θ =edu.uptymez.com
            
Tan θ = edu.uptymez.com 
            
Tan θ = edu.uptymez.com

 
 

           edu.uptymez.com


EXERCISE

1.      Write the signs of each of the following

a.       Cos 1600 = negative

b.       Cos 3100 = positive

c.       Cos 750 = positive

d.      Sin 2200 = negative

e.       Cos 3350 = positive

f.       Tan 190=  positive


2.      Express the following in terms of sine, cosine or tangent of an acute angle

a).       Cos 3080
           =3600– 3080
           = 520
            =Cos 520

b).      Sine 217 0

        = ( -217 – 180)0
        = -( 370)
        = Sin -370

c).     Tan 1750

      = -(1800 – 1750)
      = -50
     Tan -50

d).     Tan 3330

         = -(360 -333)0
       = -270
     = sin-270
e).       Cos 1030
      = – (180 -103)
       =  -770
       = cos -770
3.      Express the following in terms if sine
a).  Sin 130 0
       = (180- 130)0
        = sin  500
b). Sin 2300
      =  -(230 -180) 0
     =  -sin 500
c).  Sin 310 0
      = – ( 360 – 310)0
     = -sin 500

Examples

1. Let θ be any angle and P with coordinates (-4, 3) be a point in the terminal point of op, see the figure below. Find

    a. sinθ

    b. cosθ

    c. tanθ

 
 

edu.uptymez.com 
(OP)2=   (-4)2+ (3)2

OP= 5
a.       Sin θ = sin ( 180- θ) = 3/5
b.      Cos θ = cos ( 180 – θ) = -4/5
c.       Tan θ = tan (180-θ) = – ¾

 
 


EXERCISE

1.      Find the cos θ and tan if θ is the angle made by the positive x- axis, from the line from the origin to each of the following points.

a.       ( 2,6)

Solution

edu.uptymez.com
Cos θ = edu.uptymez.com    
                    
Sin θ = edu.uptymez.com  


edu.uptymez.com   

           
b.      (-12 , 5)

edu.uptymez.com
Cos θ = –edu.uptymez.com       

 Tan θ = – edu.uptymez.com
 Sin θ = edu.uptymez.com
 
c.       (-4,-3)

         edu.uptymez.com


Cos θ = –edu.uptymez.com     

 Tan θ = – edu.uptymez.com
 Sin θ = –edu.uptymez.com


 
POSITIVE AND NEGATIVE ANGLES                                                                                                                                            

NOTE;

1.      If θ is positive, the negative angle corresponding to θ is (-3600 +θ)

2.      If θ is negative, the positive angle corresponding to θ is (3600 +θ)

 
 

Example
1. Find the positive or negative angles corresponding to each of the following angles.
    a.       3040= ( -3600 + θ) = (- 3600  + 304 ) = -56 0
    b.      -115 0 = ( 360 0+ θ) = 3600 + -1150 = 2450

2.  Find the sine, cosine and tangent of each of the following angles.

     a.    1440

 
Solution 
  1440 = 1800 – 1440 = 36 0

           = sin 360 = 0.5878
           = cosine 360 = -0.8090
          = tan 360 = -0. 7265
 
b).   -2310
 
     = 3600 + θ = 3600 + -231
    = 1290
     =1800– 1290
    = 510
    Sin 510= 0.7771
    Cosine 510= 0.6293
     Tan 510= -1.2349

c).    310 0

 
   = 360 0 –3100 = 500
   Sin3100= sin500 = 0.7660
  Cosine 310 0 = cosine 500= 0.6428
   Tan 310 0 = tan500 = 1.1918
 
edu.uptymez.com

 

RELATIONSHIP BETWEEN TRIGONOMETRIC RATIOS

Consider a triangle A, B, C in which angles A and C are complimentary angles. ie A+C = 900

edu.uptymez.com

 
 

Sin A = a/b
Cos C = a/b
Sin A = Cos C = a/b
C = 90-A
Sin A = Cos (90-A)0 = Cos C = a/b
Cos A = c/b
(Sin A)2 = sin2 A
Sin 2 A + Cos 2 A = edu.uptymez.com = 1

                                                           
 

 
 

Exercise

 
 

1.      Given that Sin θ = 4/9 . find Cos θ

 
 

Solution
Sin2θ + cos2 θ = 1
 (4/9 )2  + cos2θ  = 1
Cos 2 θ = 1- 16/81
Cos θ = edu.uptymez.com

               
 

2.    If Sin θ = 0.9397 and Cos θ = 0.3420. Find without using tables tan θ.

 
 

Solution
Tan θ = edu.uptymez.com  =   edu.uptymez.com     = 2.748

                 

3.      If Sin α = edu.uptymez.com    find sin(90-α)

            
 

Solution
α + β = 900
β = 900 – α
Sin α = Cos (900– α) = Cos β = edu.uptymez.com        
                                             
Sin2β + Cos 2β =1
Sin2β  +  edu.uptymez.com2
           
Sin2β= edu.uptymez.com
           
Sin2β= edu.uptymez.com
         
Sin β = Sin (90-α) = edu.uptymez.com

                           
 


4.      If Sin A = 0.9744 and Cos A = 0.225

Find without using tables Tan A?
 
Solution
Tan A = edu.uptymez.com 
            
          =edu.uptymez.com
            
Tan A = 4.3307

 
 

5.      Find without using tables sin α if cos α = 0.9272 and tan α=0.404

 
 

Solution
Tan α = edu.uptymez.com
            
0.404  =  edu.uptymez.com
  
  Sin α = 0.3746

APPLICATIONS OF TRIGONOMETRICAL RATIOS     
                                                                                                                                                                             
Angles of depression and elevation

 
 

  edu.uptymez.com

Example and exercise

1.      From the top of a tower , the angle of depression of a point on the ground 1M away from the base of the tower is 600. How high is the tower?

 
 

 
 

Solution

edu.uptymez.com

Tan600= edu.uptymez.com

               
 

Tan600= edu.uptymez.com

BA = tan 600 x 10 m

BA = 17.321m = height of a tower

 
 

2.      P and O are two pegs on level ground and both lie due west of a flag staff. The angle of elevation of the top of the flagstaff from P is 450 and from Q is 600. Find distance PQ.

 
 

Solution

edu.uptymez.com

 

Tan450= AB

               24m

 
 

AB = 24m x tan450

AB = 24m

Tan 600 = edu.uptymez.com

QB =    edu.uptymez.com

          
 

QB = 13.85m

PQ = 24m – 13.85m

PQ = 10.15m

 
 

3.      At a point 182 m from the foot of a tower on a level road, the angle of elevation of the top of the tower is 360441. Find the height of the tower.

Solution

edu.uptymez.com

 
 

Tan 36044′ =   edu.uptymez.com 

                      
 

h = 0.7463 x 182 m

h = 135.8266m

 
 

4.      x and y are two points on opposite banks of a river( figure below) . If PY measures 90m and XPY = 590. Find the width of the river.

 
 

Solution

edu.uptymez.com

  
 

Tan590 =    w

                90m

 
 

W = tan590 x 90m

     = 1.6643 x 90m

     = 149.787m

TRIGONOMETRIC SPECIAL ANGLES

angle

00

900

1800

2700

3600

Sine

0

1

0

-1

0

Cosine

1

0

-1

0

1

Tangent

0

0

0

edu.uptymez.com

edu.uptymez.com

 
 

 
 

Cos θ= edu.uptymez.com

Cos θ = x

Sin θ = edu.uptymez.com 

Sin θ = y

 
 

edu.uptymez.com 

  
 

OTHER SPECIAL ANGLES:

Consider an equilateral triangle ABC

Let each side to have two (2) units

 
 

  edu.uptymez.com

Using Pythagoras theorem

(AB)2 = (BX)2 + (AX)2
22 = 12 + (AX)2
AX = √3
 
Sin 600 = edu.uptymez.com
             
Cos 600 = edu.uptymez.com


edu.uptymez.com
edu.uptymez.com

                        
Tan 600 edu.uptymez.com
               
Sin 300 = edu.uptymez.com 
Cos 300 = √3
                  2
Tan 30 0edu.uptymez.comedu.uptymez.com
                
      
For 450

Consider an isosceles triangle ABC

 edu.uptymez.com


edu.uptymez.com

                  
 

EXAMPLES

1.       Find the sine, cosine and tangent of each of the following angles.

(a)    -1350

                       = 3600 + -1350
                       = 3600– 1350
                       = 2250
                       =2250 – 1800
 Sin 450 = edu.uptymez.com
 Cos 45 0 = edu.uptymez.com

 
Tan (– 1350) = tan 450= 1

b.    3300

                 = 3600 – 3300
                 = 300
                 = sin 330 0 = – sin 300 = – edu.uptymez.com
            edu.uptymez.com

                                  
 

2.      Find the values of the following without using tables.

 
 

edu.uptymez.com

      =  edu.uptymez.com
     
      =  edu.uptymez.com  x edu.uptymez.com     

      =  edu.uptymez.com

   
 

 
 

3.      edu.uptymez.com    
        
edu.uptymez.com
         =  edu.uptymez.com x  edu.uptymez.com 
        =    edu.uptymez.com

SINE RULE                                                                                                                                                             

Let us consider a triangle ABC, with its including angle C

Let us find the area of the triangle using its including angle and two sides.

                   edu.uptymez.com

Area of triangle ABC = edu.uptymez.com x a x b x sin C
Area of triangle ABC = edu.uptymez.com x a x c x sin B
Area of triangle ABC = edu.uptymez.com x b x c x sin A
edu.uptymez.com x a x b x sin c = edu.uptymez.com x a x c x sin B = edu.uptymez.com x b x c x sin A
Dive each by edu.uptymez.com x a  x c
edu.uptymez.com  = edu.uptymez.com  = edu.uptymez.com                               

          
 

 
 

Examples

1.      Find the unknown sides and angle sin each of the following triangles.

     edu.uptymez.com

 
Solution
       edu.uptymez.com= edu.uptymez.com

           
                 edu.uptymez.comedu.uptymez.com
 
             but A = 1800 edu.uptymez.com ( 61+43)0
                edu.uptymez.com =  edu.uptymez.com
 
               edu.uptymez.com  =    edu.uptymez.com
   
                b = edu.uptymez.com 
        
 
 

No.

Logarithm

   6.820 x 10-1

4x 100

 
 

9.703 x 10-10

2.812 x 10

= 2.81cm

   1.8338

+ 0.6021

   0.4359

 
 

1.9869

0.4490

  

edu.uptymez.com

       
 

             
 

 

2.   Juma notices that the angle of elevation of a coconut tree is 320. Walking 11 m in the direction towards the tree he notices the angle of elevation to be 450. Find the height of the tree.


Solution

edu.uptymez.com

 Tan45 0 =   edu.uptymez.com
                
h = tan450 ( x – 11)
h = x – 11…..(i)
edu.uptymez.com
 
h = tan 320   X x
h = 0.6249x………….ii)

compare i) and ii) eqns
x-11=0.6249x
x-0.6249x=11
0.3751x= 11
x=0.0341m


        COSINE RULE

Consider a triangle ABC whose coordinates are A ( 0,0) , B ( c, 0) and C (b cos A , b sin A)

 
 

    edu.uptymez.com

 
 

Cos A = edu.uptymez.com 
Sin A = edu.uptymez.com
X = b cos A 
Y = b sin A
 
a2= (b cos A – c)2 + ( b sin A – 0)2
a2= b2 cos 2A – 2bccos A + c2 + b2 sin2 A
a2= b2 sin 2A + b2cos 2 A – 2bccosA+ c2
a2 =(sin2 A+ cos2A)b2 + c2-2bccosA
 a2= b2+ c2 – 2bc cos A

 b2=  a2+ c– 2ac cos B           cosine rule
 c2= b2+ a2 – 2 a b cos c

Example

                     edu.uptymez.com
                                    Find the value of angle A.

a2= b2+ c 2 – 2bcCos A

(2.8)2= (3.4) 2 + (4.5) 2 – 2 x 3.4 x 4.5 x cos A
32= 32 + 52– 2 x 3 x 5 x cos A
Cos A = 5/6 =0.8333
A = cos-1 0.8333

 
 

No.

logarithm

0.5 x 10 1

0.6 x 101

8.33 x 10-1

= 83.33

30034′

  1.6990

– 1.7782

-1.9208

  

edu.uptymez.com

 A = 33030′

 

COSINE OF THE SUM AND DIFFERENCE OF TWO ANGLES (A and B)                                                                                              
 
Cosine ( A + B ) = cos A cos B – sin A sin B
Cosine (A-B) = cos A cos B + sin A sin B
 
Verify that
Cos ( 90 – 60) = cos 90 cos 60 + sin 90 sin 60
Cos 30= cos 900 cos 600 + sin 900 sin 600
edu.uptymez.com = 0 x edu.uptymez.com  +  edu.uptymez.com
      = edu.uptymez.com

 
 

Questions

1.  find the cosine of 750 without using mathematical tables.

 
 

solution
Cos 750 = cosine (30 + 45)
       = cosine 45 cosine 30 – sin450 sin 300
        = edu.uptymez.com x edu.uptymez.com –  edu.uptymez.com x edu.uptymez.com 
 
        = edu.uptymez.com
            
        = edu.uptymez.com
      
        = 0.2588

We use the knowledge of coordinate geometry to find the distance and cosine rule.


Consider a unit circle of radius 1 with points P and Q and angles A and B shown in the figure.

Let the distance from P to Q be d.

   edu.uptymez.com

By distance formula

d2= ( cos A – cos B )2 + ( sin A – Sin B) 2

d2 = cos 2edu.uptymez.com 2 cos A cos B + cos 2 B  + sin 2 A – 2 sin A sin B + sin2B
d2= cos 2A + sin 2 A + cos 2B + sin 2 B – 2 sin A sin B + sin 2 B
d2 = 1+1 – 2 (cos A cos B + sin A sin B)
d2 = 2edu.uptymez.com 2(sin A sin B + cos A cos B) ……. (i)


by the cosine rule

d2 = 12 + 12 – 1 cos (A-B)
d2 = 2edu.uptymez.com 2 cos ( A-B) ……(ii)
 
equate equation (i) and (ii)

2edu.uptymez.com2 cos (A-B) = 2-2 ( cos A cos B + sin A sin B)
-2 cos (A-B)  = -2 ( cos A cos B + sin A sin B)
Cos ( A edu.uptymez.com B) = cos A cos B + sin A sin B …. (iii)
 
 
also
Cos (A+B) = cos ( A edu.uptymez.com -B ) = cos A cos–B + sin A sin –B
                  = cos A cos B – sin A sin B ……( iv)


 
THE SINE OF THE SUM AND DIFFERENCE OF ANY TWO ANGLES                                                                               

Consider a triangle ABC and c as a acute angle.

 
 

     edu.uptymez.com
     
Sin C = Cos (90 – C) = edu.uptymez.com…….. (i)
Now let C = 90 – A

edu.uptymez.com

Sin (90 – A) = Cos A = c/b …..(ii)
 
Also let c be A + B

edu.uptymez.com

 
Sin (A+ B) = cos (90 – (A+B))
Sin ( A+ B) = cos((90 – A) –B)
Sin (A+B) = cos (90- A ) cos B + sin (90- A) Sin B
Sin (A+B) = sin A cos B + sin B ( cos A)
Sine of the difference of any two angles A and B
Refer to the above expression
Sin (A-B) = sin (A + – B) = sin A cos –B + sin –B cos A
 
Sin A cos B – sin B cos A    __ Difference of any two angles.
 
Exercise


 
1.    (a)  Find the truth set of
          Sin θ = – edu.uptymez.com in the domain 0≤ θ≤3600
 
    (b) verify that for any small angle A0
        cos (90-A ) = sin A
 

Solution

 a. sin θ = – edu.uptymez.com
sin negative is in the 3rd and 4th quadrant
3rd

     Θ-1800 = 300

     Θ = 180 + 30 0
     Θ = 210 0


4th

      360 – θ =300
      – θ = 300– 3600
      – θ =- 330 0
      θ = 330 0
 
The truth set of sin θ = edu.uptymez.com= 00 ≤ θ≤3600
 
b. cos (90-A) = sin A  
cos 90 cos A + sin 90 sin A =sin A
0 x cos A + 1 x sin A = sin A
Sin A = sin A

 
 

2.  Use sin( S + -t ) to help find a formula for sin (s edu.uptymez.com t)

 
 

Solution
   S edu.uptymez.com t = s + ( -t)
= sin S cos –t + sin (-t) cos S
= sin S cos t – sin t cos S

3 . Verify that sin (edu.uptymez.com +  edu.uptymez.com)  =  sin edu.uptymez.comcos edu.uptymez.com + sin edu.uptymez.comsinedu.uptymez.com

 
 

θ = edu.uptymez.com
                        
     =  edu.uptymez.com
        
     =  edu.uptymez.com
     =  600  x  5
     =  300 0
     = 3600edu.uptymez.com 3000
Sin ( 120 + 300) = 120 cos 300 + cos 120 sin 300
Sin 4200= sin 60 cos 60 + -cos 60 –sin 60
Sin 60 = edu.uptymez.com   x  edu.uptymez.com  +   – edu.uptymez.com  x  edu.uptymez.com
edu.uptymez.com= edu.uptymez.com +  edu.uptymez.com
edu.uptymez.com= edu.uptymez.com

Share this post on: