Form 2 Mathematics – CONGRUENCE OF SIMPLE POLYGON

Share this post on:

 

edu.uptymez.com

 
 

The triangles above are drawn such that

Cedu.uptymez.comB= Zedu.uptymez.comY

Aedu.uptymez.comC=Xedu.uptymez.comZ

Bedu.uptymez.com=Yedu.uptymez.comX

Corresponding sides in the triangles are those sides which are opposite to the equal angles i.e.

edu.uptymez.com

If the corresponding sides are equal i.e.

edu.uptymez.com

In general, polygons are congruent if corresponding sides and corresponding angles are equal.
The symbol for congruence is edu.uptymez.com

Congruence of triangles

Case 1: Given three sides

Two triangles are congruent if the three pairs of corresponding sides are such that the sides in each pair are equal.

Consider the triangles below:

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Note: SSS- is an abbreviation of side- side- side

Examples :

edu.uptymez.com

Solution

edu.uptymez.com
Construction of A is joined C

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

 Construction; A joined to D

edu.uptymez.com

   edu.uptymez.com

Case 2; Given two sides and the included angle (SAS)

Two triangles are congruent if two pairs of corresponding sides are such that the sides in each pair are equal and the angles included between the given sides in each triangle are equal.

Examples

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Case 3; Given two angles and a corresponding side

Two triangles are congruent if two pairs of corresponding angles are such that the angles in each triangle are equal.

edu.uptymez.com

Example

edu.uptymez.com

Solution
edu.uptymez.com

Case 4: Given that a right angle hypotenuse and one side (RHS)

The right angled triangles are congruent if the hypotenuse and a side of one triangle are respectively equal to the hypotenuse and side of another triangle

edu.uptymez.com

Example:

Use the figure below to prove that

edu.uptymez.com

Solution

edu.uptymez.com

Aedu.uptymez.comC= Aedu.uptymez.comB -right angles

Therefore

edu.uptymez.com

 Note:

R.H.S – Right angle hypotenuse side

Isosceles triangle theorem

The base angles of an isosceles triangle are equal

 edu.uptymez.com

edu.uptymez.com

Construction:-

edu.uptymez.com

 Exercise 1.

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Solution

edu.uptymez.com

ABCD = Common line
edu.uptymez.com

edu.uptymez.com

They are  alternate interior angle

edu.uptymez.com

 
 

edu.uptymez.com

 
 

AB=CD given

BC =AD given

edu.uptymez.com

edu.uptymez.com

 
 

SOLUTION

edu.uptymez.com

edu.uptymez.com

6. O is the center of the circle ABCD, if AC and BD and diameter of the circle and the line segments AD, AB and CB are drawn prove thatedu.uptymez.com

 
 

edu.uptymez.com

Solution

edu.uptymez.com

CONVERSE THE ISOSCELES TRIANGLE THEOREM

If two angles of a triangle are equal then sides opposite those angles are equal

 
 

edu.uptymez.com

Given that edu.uptymez.comC=edu.uptymez.com

Required to prove edu.uptymez.com= edu.uptymez.com

Construction A and D are joined such that

edu.uptymez.com

 
 

THEOREMS OF PARALLELOGRAMS

1)   The opposite sides of the parallelogram are equal

edu.uptymez.com

Given a parallelogram ABCD

Required to prove

edu.uptymez.com

Construction:D is formed to B

Aedu.uptymez.comB= Cedu.uptymez.comD -is interior angles AB//DC

Aedu.uptymez.comD= Bedu.uptymez.comC -is interior angles AB//DC

edu.uptymez.com

Therefore

edu.uptymez.com

2. The opposite angles of the parallelogram are equal

edu.uptymez.com

 
 

Dedu.uptymez.comB= Dedu.uptymez.comB

Aedu.uptymez.comC + Dedu.uptymez.comB=180edu.uptymez.comInterior angle of the same side of edu.uptymez.com// edu.uptymez.com

Aedu.uptymez.comC + Dedu.uptymez.comB=180º interior angles on side of edu.uptymez.comedu.uptymez.com//edu.uptymez.com

Therefore

edu.uptymez.com

Similarly

Dedu.uptymez.comB + Aedu.uptymez.comC=180º interior angles the same side of edu.uptymez.comedu.uptymez.com//edu.uptymez.com

Bedu.uptymez.comD + Aedu.uptymez.comC=180º interior angles the same side of edu.uptymez.com,edu.uptymez.com// edu.uptymez.com

Therefore

Dedu.uptymez.comB + ABC= Bedu.uptymez.comD + Aedu.uptymez.comC

Dedu.uptymez.comB= Bedu.uptymez.comD

Hence opposite angles of a parallelogram are equal.

3.The diagonals of a parallelogram bisect each other

edu.uptymez.com

4. The diagonals of a parallelogram intersect each other

If one pair of the opposite sides of a quadrilateral are equal and parallel then the other pair of the opposite side are equal and parallel.

edu.uptymez.com

edu.uptymez.com

Example

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Share this post on: