Form 2 Mathematics – GEOMETRICAL TRANSFORMATIONS

Share this post on:

 -A transformation  changes the position, size, direction or shape of objects.
 -Transformation in a plane is a mapping which moves an object from one position to another within the plane. The new position after a 
  transformation is called an image

Examples of transformations are

         1. Reflection

         2. Rotation

         3. Enlargement and

         4. Translation

Suppose a point p[x, y] in the xy plane moves to a point pΔ [xΔ, yΔ] by a transformation T

P is said to be mapped to PΔ by T and may be indicated as                                  

    edu.uptymez.com

A transformation in which the size of the image is equal to the size of the object is called an Isometric mapping

REFLECTION

-Reflection is an example of an isometric mapping

-Isometric mapping means the distance from the mirror to an object is the same as that from the mirror to the image.

-The plane mirror is the line of symmetry between the object  and the image.
-The line joining the object and the image is perpendicular to  the mirror.

NOTE
-The symbol/letter for reflection is M.
-The reflection in X- axis and Y- axis are  indicated as Mx and My respectively.
-The reflections in lines with certain equations are indicated with their equations as subscripts

For example: My  = x,is given by My  = x
                  
 A) Reflection in the x-axis

Example

1.   1. Find the image of the point A(2,1) after a reflection in the x-axis

  Solution:

    edu.uptymez.com

2

 
 

(B)Reflection in y-axis

2. Find the image of 0(3,4) under the reflection in the Y-axis 

    Solution:
  
   edu.uptymez.com
Exercise 1

1.   Find the image of the point D(4,2) under a reflection in the x-axis

  Solution:

      edu.uptymez.com
 

2.Find the image of the point P(-2,5) under the reflection in the x-axis

    Solution:

      edu.uptymez.com

 

 
 

     3. Point Q (-4,3) is reflected in the Y- axis

  Solution:

        edu.uptymez.com

4. Point R (6, 5) is reflected in the X-axis.

         Find the coordinates of its image

        edu.uptymez.com

   5. The vertices of a triangle PQR are P (6, 2), Q (2, 8), R (5, 1). If triangle PQR is reflected in the Y axis, find coordinates of the vertices of its image.

               6. The vertices of rectangle area A (2,3), B (2,-4), C (4, -4), D (4,3) rectangle ABCD is reflected in the Y-axis

(a)  Find the coordinates of the vertices of its image

(b)  Draw a sketch to show the image

Solution

         edu.uptymez.com

            6(a)The coordinate of the image is A'(-2,3), B'(-2,-4). C'(-4,-4) and D'(-4,3)
           edu.uptymez.com

C) THE REFLECTION IN THE LINE Y = X

The line y = x makes an angle 45º with the x and y axes

See the diagram

      edu.uptymez.com


My=x (x,y)=(y,x)

Example

1.    Find the image of point A(1,2) after a reflection in the line y=x

     edu.uptymez.com

 
 

D) REFLECTION IN THE LINE Y = -X


   edu.uptymez.com


My=-x(X,Y)=(-y,-x)

Example

Find the image of B (-3, 4) after a reflection in the line y=-x followed by another reflection in the line y=0

Solution

   edu.uptymez.com


The reflection of B (3, 4) in the line y = x is B’ (4, 3) and the image of

B’ (4, 3) after reflection in the line y = 0 is B’ (4, 3)

NOTE:
If P is the object the reflection of point P(x,y) will be:
  1.   M x-axis P (x,y) = P′ (x, -y)   
  2.   M y-axis P (x,y) = P′ (-x, y)
  3.  M Y=x P (x,y) = P′ (y,x)
   4.M y=-x P (x,y) = P′ (-y, -x)

Rotation

      -Rotation is a transformation which moves a point through a given angle.
-The angle turned through can be either in clockwise or anticlockwise direction.

      –Rotation is an isometric mapping and usually denoted as R. Rθ means a rotation through an angle θ

      -In the XY plane when θ is measured in the clockwise direction, the angle is  -ve and when measured anticlockwise direction the angle is +ve

    edu.uptymez.com


Example

1.   Find the image of the point P(1,0) after a rotation through 900 about the origin in anti-clockwise direction

edu.uptymez.com

TRANSLATION

      –Translation is a straight movement without turning.

      -A translation is usually denoted by T. For example T(1,1)  =  (6,1) means that the point (1,1) has been moved to (6, 1) by a translation T.                                                                                  

     – This translation will move the origin (0,0) to (5,0) and it is written as T = (5/0).

  

Examples:

1.   A translation takes the origin to (2, 5) find when it takes (2, 3)
Solution
edu.uptymez.com

T (2,3)  = (0, 8)

2.   Find the image of the point (1,2) under a rotation through 1800 anti-clockwise about the origin
Solution

edu.uptymez.com

3.   Find the rotation of the point (6, 0) under a rotation through 900 clockwise about the origin
Solution

edu.uptymez.com

4.   Find the image of (1,2) after a rotation of900 ant –clock wise
Solution

edu.uptymez.com

5.   Find the image of (3, 5) after a rotation of 1800
Solution

       edu.uptymez.com

6.   The vertices of rectangle PQRS are P(0,0), Q (3,0), R (3,2), S (0, 2). The rectangle is rotated through 900 clockwise about the origin.

(a)  Find the co-ordinates of its image

(b)  Draw the image

edu.uptymez.com 

More examples on translation

1.   Translation takes the origin to (-2, 5)

      Find where it takes

(a)  (-6, 6)

(b)  (5, 4 )

Solution

         (a)        edu.uptymez.com = edu.uptymez.com = edu.uptymez.com

                   edu.uptymez.com = edu.uptymez.com = edu.uptymez.com

                       edu.uptymez.com = edu.uptymez.com 

                       edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

                             = edu.uptymez.com

The translation takes (-6,6) toedu.uptymez.com

(b)               edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

                   = edu.uptymez.com

                   : The translation takes (5,4) to (3,9)

2.   A translation  takes every point a distance of 1 unit to the left and 2 units downwards on the xy-plane.

     Find where it takes

(a)  (0,0)

(b)  (1,1)

(c)  (3,7)

Solution

(a).

     edu.uptymez.com

edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

       = edu.uptymez.com + edu.uptymez.com

        =edu.uptymez.com

: . The translation takes the origin to (1, 2)

(b).      edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

                   = edu.uptymez.com + edu.uptymez.com

                      =edu.uptymez.com

3.   3. A translation moves the origin a distance 2 units along the line y= x upwards.

Find where it takes

(a)  (0,0)

(b)  (2, 1)

(c)  (1, 1)

Solution

  edu.uptymez.com

 
 

 
 

edu.uptymez.com
x = 2cos 450 = 2 x edu.uptymez.com = edu.uptymez.com                            

Sin 450 = edu.uptymez.com =  edu.uptymez.com

y = 2sin 450 = 2 x edu.uptymez.com = edu.uptymez.com

Translation factor  (edu.uptymez.com , edu.uptymez.com)   
                      

(a).  edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

= edu.uptymez.com

: . The origin is translated to ( edu.uptymez.com, edu.uptymez.com)

(b).   edu.uptymez.com = edu.uptymez.com + edu.uptymez.com =  edu.uptymez.com

: . (2, 1) is translated to ( (edu.uptymez.com + 2), (edu.uptymez.com – 1))

 
 

4.  A translation takes the point

     (3, 2) to (-4, -5), Find where it takes

  (0 , 0)

 

Solution

edu.uptymez.com = edu.uptymez.com + edu.uptymez.com where edu.uptymez.com is translation factor

 edu.uptymez.com                                                              

 

ENLARGEMENT

Enlargement is a transformation in which a figure is made larger (magnified) or made smaller (diminished).

      The number that magnifies or diminishes a figure is called the enlargement factor usually denoted by letter K. If K is less than 1 the figure is diminished and if it is greater than 1 the figure is enlarged K times.

      In case of closed figures if the lengths are enlarged by a factor K then the area is enlarged by K2

Examples: –

1.  Draw a triangle PQR with vertices P (0,0), Q (0, 3) and R (3, 0)

edu.uptymez.com

P’ = 2 (0,0) = (0,0)

Q’ = 2 (0,3) = (0,6)

R’ = 2 (3,0) = (6,0)

2. From the above question, what is the area of the new (enlarged) triangle?

Solution.

Area of the original triangle

= edu.uptymez.com x 3 x 3
= 4.5 square units

       The area of the new triangle = 4.5 x K2

                                                     = 4.5 x 22

                                                     = 18 square units

 

3. The line segment AB with coordinated A (4,0) and B (0,3) enlarge to AΔBΔ by a factor 2. Find the coordinates for AΔ and BΔ

     A’ = 2 (4, 0)
         = (8,0)
    B’=2(0,3)
        =(0,6)

edu.uptymez.com

4. Find the image of the circle of radius one unit having its centre at (1,1) under enlargement transformation factor 5

       edu.uptymez.com

Solution:

                       = 5(1,1)

                       = (5,5)

The image of the enlarged circle is (5,5)

5.  

 EXERCISE 2

edu.uptymez.com

(a)  Δ ADE to Δ ABC?

(b)  Δ ADE to Δ AFG?

                              edu.uptymez.com

     (a)  Δ ADE to Δ ABC    =edu.uptymez.com

                   = edu.uptymez.com

    edu.uptymez.com

2.The point P(6,2) is enlarged by factor of 4, what is the new end point?

Solution

4 (6,2)

=        (24, 8)

:. The point is (24, 8)

 
 

2.  ABCD is a parallelogram

edu.uptymez.com

                               edu.uptymez.com

Solution
edu.uptymez.com

EXERCISE 3

  1.  List 3 examples of isometric transformation

o   Translation
o
   Rotation
o
   Reflection

2.   Is enlargement an Isometric transformation?
     Enlargement is not an Isometric transformation.

3.Find the image of the point Q (6, 8) after a rotation of 900 about the

          edu.uptymez.com

       R90º(6, 8)  = (6,8)

 
 

Draw a parallelogram ABCD with vertices A (2,5), B (5,5) , C (6,8), D (3,8) find and draw the image parallelogram formed by the translation wich moves the origin to (2,4)

Solution

A = edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

               A = edu.uptymez.com

                 A = (4,9)

 
 

B = edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

               =edu.uptymez.com

               B = (7, 9)

 
 

C = edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

               = edu.uptymez.com

               C = (8, 12)

 
 

D = edu.uptymez.com + edu.uptymez.com=  edu.uptymez.com

               D = (5, 12)      

 
     edu.uptymez.com

 
 

Share this post on: