Form 2 Mathematics – STATISTICS

Share this post on:

Definition

-is a branch of mathematics dealing with the study of method of collecting, organizing, analyzing, presenting and nglish-swahili/interpreting” target=”_blank”>interpreting numerical details to reach conclusions.  

Frequency nglish-swahili/distribution” target=”_blank”>distribution

Is a number of times each data point

Example 1

1.       Make  a frequency table from  the following data from the followings data  of ages 10 students 

14, 15, 16. 14, 17, 15, 16, 13,

   edu.uptymez.com

2.       In mathematics test the following marks were obtained;

48 , 47,42, 67, 73, 50, 76 ,47, 44, 44, 57, 58, 54, 45, 58, 56 , 66, 67, 45, 43, 71, 48, 64, 52, 42, 54, 62, 32, 49, 34, 35, 46, 89, 37, 47, 54, 45, 60, 64, 44,.

If the class size of the class interval is 8 group the works starting with the interval 32-39 and draw the frequency nglish-swahili/distribution” target=”_blank”>distribution table.

solution

 
 

Mark

Frequency

88-95

1

80-87

0

72-79

2

64-71

6

56-63

6

48-55

8

40-47

13

32-39

4

  

n=40

edu.uptymez.com

 
 

 
 

                                                                                                                            
 

 
 

 
 

 
 

 
 

 

Example

From example below find the class mark  of  the class interval 88 – 95 and 80 – 87

class mark:    edu.uptymez.com  and   edu.uptymez.com 

                      edu.uptymez.com  and  edu.uptymez.com 

                   =  91.5 and  83.5

Class limit ; example in class interval  88 – 95

88 is the class lower limit

95 is the class upper limit

CLASS REAL  LIMITS

class lower real limit – is the number obtained by subtracting 0.5 from a class lower limit e.g. 88-0.5= 87.5

class upper real limit obtained by adding 0.5 to the upper class limit eg, 95 + 0.5 = 95.5

class size-  is the value obtained by the difference between  the upper real limit and the  lower real limit

example .

from class interval 88-95 and 31-35

find the class size

solution:

Lower class real limit = 88 – 0.5 = 87.5

Upper class real limit = 95+ 0.5 = 95.5

Class size = 95.5 – 87.5 = 8

Lower class real limit = 31 – 0.5 = 30.5

Upper class real limit = 35+ 0.5 = 35.5

Class size = 35.5– 30.5= 5

Exercise 1: 

(1).In biology class test the following marks when obtained;

54,54,40,55,54,43,73,34, 75, 47, 35, 45,73,46,31,43,47,35,35,60,67,51,44,48,55,45,50,37,51,36

By grouping the marks in class interval 20-29 ,30-39, 40-49, etc construct the  the frequency   


Solution:  
                   
                                             
                                                                        DISTRIBUTION TABLE

Marks

Frequency(f)

20 -29

0

30 –39

7

40 -49

10

50 -59

8

60 -69

2

70 -79

3

  

N = 30

edu.uptymez.com

 
 

(2) The following data represent the masses of 10 people in kg. Construct the frequency nglish-swahili/distribution” target=”_blank”>distribution table for these people

30 25 35 28 38 40 25 25 40 24

 
 

Solution:                               

edu.uptymez.com

                                         
 

(3). The following is a set  of marks on a geography examination presents the frequency nglish-swahili/distribution” target=”_blank”>distribution table with class intervals, real limit, class marks, interval  size starting with the interval 8-15 at the bottom

Solution:
               

class interval

Real limits

class marks

interval

f

88-95

      87.5-95.5

       91.5

    8

   3

80-87

79-87.5

       83.5

    8

   3

72-79

71.5-79.5

75.5

    8

   6

64-71

       63.5-71.5

       67.5

    8

   3

56-63

       55.5-63.5

       59.5

    8

   6

48-55

       47.5-55.5

       51.5

    8

   4

40-47

       39.5-47.5

       43.5

    8

   7

32-39

       31.5-39.5

       35.5

    8

   4

24-31

       23.5-31.5

       27.5

    8

   8

16-23

       15.5-23.5

       19.5

    8

   2

 8-15

        7.5-15.5

       11.5

    8

   4

  

  

  

  

n=50

edu.uptymez.com

 
 

(4). Fill in the blank columns

Distribution of 100 math s examination score

                           
 

class interval

      real limit

class marks

interval

f

95-99

       94.5-99.5

        97

     5

     3

90-94

       89.5-94.5

        92

     5

     7

85-89

       84.5-89.5

        87

     5

     9

80-84

       79.5-84.5

        82

     5

    13

75-79

       74.5-79.5

        77

     5

    20

70-74

       69.5-74.5

        72

     5

    23

65-69

       64.5-69.5

        67

     5

    17

60-64

       59.5-64.5

        62

     5

      8

  

  

  

  

  

  

  

  

  

N=100

edu.uptymez.com

                                                                                                                          
 

Note:

Class real limits are also known as class boundaries
 

GRAPHS OF FREQUENCY DISTRIBUTIONS:

HISTOGRAMS

Histograms  of frequency nglish-swahili/distribution” target=”_blank”>distribution  are rectangular figures plotted with class marks against frequency . The width of the histogram equal to the class size.

Example:               

1. Draw a histogram of 100 mathematics examination scores in the table below

 
 

class interval

class mark

frequency

95-99

97

3

90-94

92

7

85-89

87

9

80-84

82

13

75-79

77

20

70-74

72

23

65-69

67

17

60-64

62

8

edu.uptymez.com

 
 

 
 

                                                              edu.uptymez.com

 
 

3.       . 2. Use the following nglish-swahili/distribution” target=”_blank”>distribution table below to draw a histogram

 
 

age

Frequency

13

     1

14

     4

15

     2

16

     2

17

     1

  

  

edu.uptymez.com

                                                                                                                                                                                                                                      
 

 
 

 
 

 
 

 
 

Solution

edu.uptymez.com

 
 

FREQUENCY POLYGON

Is the line graph of class frequency plotted against class marks

Steps ;

1.     1. Add one interval below the lowest interval and one above the highest interval and assign them as  zero frequency.

2.     2.  Plot a point and join them by straight lines

Example

1. Draw a frequency polygon from the following data.

  

  

  

c-interval

c-mark

frequency

100-104

102

0

95-99

97

3

90-94

92

7

85-89

87

9

80-84

82

13

75-79

77

20

70-74

72

23

65-69

67

17

60-64

62

8

55-59

57

0

edu.uptymez.com

                                            
 

 
 

edu.uptymez.com

 
 

EXERCISE

1. The following table shows female death between 0 and 34 years to the nearest numbers represent  this information by

A) Histogram

B) Frequency polygon

Expected death of female per 100 women

  

  

  

ages

F(death risks)

age

0-4

340

2

 5-9

95

7

 10-14

55

12

15-19

60

17

20-24

95

22

25-29

110

27

30-34

120

32

35-39

125

37

                     N=1000

  

  

  

  

edu.uptymez.com

Solution:

A) Histogram

edu.uptymez.com

 
 

B) FREQUENCY POLYGON             

 
 

edu.uptymez.com

 
 

2. Table below show the nglish-swahili/distribution” target=”_blank”>distribution of marks obtained by 110 students in two different monthly tests. Draw the frequency  polygon on the same chart

 
 

marks

frequency

marks

frequency

21-30

      4

21-30

     2

31-40

      7

31-40

    12

41-50

     10

41-50

    15

51-60   

      5

51-60

     4

61-70

      3

61-70

     3

71-80

      1

71-80

     4

  

  

  

  

  

N=40

  

N=40

edu.uptymez.com

                                                       
 

edu.uptymez.com


CUMULATIVE FREQUENCY CURVE (ORGIVE)                                                                                                                                                                     

– Cumulative frequency is the sum of all the frequency less than or equal  to a given  mark or class interval

– To calculate the cumulative frequency start with the smaller upper real limit

– Add the frequency of the smallest interval to the next interval downwards or up wards depending on whether  the data is arranged in descending or  
   ascending order 

Note:  The last entry in the cumulative frequency  is always equal to the total  number of observations 
 
Plot upper real limit against class marks.

– Join adjacent points by a free hand.

 
 

EXAMPLES

1. Draw an  orgive for  the scores data below.

score

f

70-74

16

65-69

12

60-64

14

55-59

10

50-54

8

45-49

18

40-44

6

35-39

4

30-34

2

  

  

  

N=90

edu.uptymez.com

 
 

 

 

 

 

Solution; 
THE CUMULATIVE FREQUENCY DISTRIBUTION,

Score

frequency

cumulative frequency

less than 34.5

2

2

less than39.5

4

6

less than 44.5

6

12

less than 49.5

18

30

less than 54.5

8

38

less than 59.5

10

48

less than 64.5

14

62

less than 69.5

12

  

less than 74.5

16

90

edu.uptymez.com

                                                                                                                                        N =90

 
 

edu.uptymez.com

 
 

2. Motor vehicle company tested 100 cars to see how far they could travel on 10 litres of petrol. Draw the cumulative frequency curve for this company

 
 

distance  in km

100-109

110-119

120-129

130-139

140-149

numbers of car

5

15

25

35

20

edu.uptymez.com

 
 

 
 

 
 

 
 

solution

distance in km

    f

cum. F

less than 109.5

5

5

less than 119.5

15

20

less than 129.5

25

45

less than 139.5

35

80

less than

149.5

20

100

  

  

  

  

  

N=100

edu.uptymez.com

 
 

edu.uptymez.com

 
 

3. Platform in each square metre of a lawn were counted and recorded as follows. Draw an orgive for the platform

 
 

no.of plat forms

f

c. Frequency

0

10

10

1

8

18

2

7

25

3

5

30

4

4

34

5

5

37

  

  N = 37

  

edu.uptymez.com

    edu.uptymez.com

REVISION EXERCISE

1.       1.  The ages of the 22 players in a football match were  recorded in the following

      17 18 15 16 16 16 18 15 18 15 15 18 18 15 16 17 15 16 17 15 15 16 15 18 15

      Express the data in a frequency table.

        Solution:

AGES

FREQUENCY

15

10

16

5

17

2

18

5

  

N = 22

edu.uptymez.com

 2.        2.   The examination marks of 45 students are,

       65 58 71 62 64 35 72 32 64 46 59 82 73 76 64 63 75 71 61 36 64 80 61 64 76 64 60 68 48 35 92 73 46 24 35 43 30 50 70 40 46 64 24 28

     
       A)Make a frequency nglish-swahili/distribution” target=”_blank”>distribution using class interval 21-30, 31-40, 41-50,

         Solution:

c-interval

frequency

21-30

4

31-40

6

41-50

6

51-60

4

61-70

14

71-80

9

81-90

2

  

n=45

edu.uptymez.com

 
 

B) Draw cumulative frequency curve

 Solution:

  edu.uptymez.com

 
 

3.       3.  Two plot A and B were treated with different   families. The frequency number of potatoes on on samples of 100 plants on each plot are shown below

no.of potatoes

3

8

13

18

23

28

33

38

plot A

1

26

28

27

5

8

3

2

plot B

17

28

30

14

3

6

2

0

edu.uptymez.com

 

 Draw a histogram for plot B. 


  Plot B

edu.uptymez.com

   4. In a certain examination the result were as follows;

3 student got marks between 0and 10

5 students got marks between 10 and 15

6 students got marks between 20 and 40

4 students got marks between 30 and 40

2 students got marks between 40 and 50

 Construct a histogram

edu.uptymez.com

                          
 

5] final score of history examination were recorded as shown in table below

score

frequency

c- mark

50-54

1

52

55-57

2

57

60-64

11

62

65-69

10

67

70-74

13

72

75-79

12

77

80-84

21

82

85-89

6

87

90-94

9

92

95-99

4

97

edu.uptymez.com

 
 

A) What is the size of class intervals?
  
  Solution:

 5 is the size of class intervals  .

B)Draw a histogram to represent the scores .

 
   Solution:

edu.uptymez.com

 
 


 

Share this post on: