BASIC CONCEPTS
RELATION
Is a set of ordered pairs.
R =
Examples
1) Which of the following ordered pairs belong to the relation
R ={ (x,y ) : y > x}
( 1,2), ( 2,1), (-3,4), ( -3,-5), ( 2,2), ( -8,0), ( -8,-3)
Solution
{(1,2), (3,4), (-8,0), (-8,-3)}
2) Give 5 ordered pairs which satisfies the relation
R = { (x,y):y=2x}
Solution
(1,2)(2,4)
Pictorial representation of a relation
If A= and B = then the relation between A and B
can be represented as follows.
Note
We say that elements of a set A mapped into set B i.e
A B
Examples
Given that A = draw a pictorial representation of the relation
b) R ; x → x2 – 2
Domain and range of a relation
If R is the set of all ordered pairs [x, y] then;
Domain:
Range :
Examples
1) (1) Let R =
What is the domain and range of R?
Solution
Domain = all values of x
Range = all values of y
2) (2) If R = { : x are real numbers and y = x2 + 1}
Find all selected pairs which belong to R when the domain is
Solution
R =
3) ( 3)Find the domain and range of a relation y = 2x2-1
Solution
Domain =
Range of y =2x2-1
2x2 = y + 1
y +1 0
y -1
Exercise
1) If R = : x and y are real number find
a) a) A set of ordered pairs belonging to R where domain is
b) A set of ordered pairs in R where range is
2.) Let R = find
a) The set of ordered pairs which belongs to R from the following
b) The domain obtained from a
c) The set of range obtained from a
Solution
=
Solution
=
Solution
( ,) ( -2,-5) ( 3, 10)
c) Domain = { , -2, 3 }
d) Range = { , -5, 10}