BAM FORM 5 – INTEGRATION

Share this post on:

SUB-TOPIC

1. The anti derivative

2. Indefinite integrals

3. Define Integrals

4 Application of integration

THE ANTI-DERIVATIVE

. Is the reverse of differentiation.

-In differentiation we start with function to find the derivative

-For anti derivative we start with derivative to find the function

Consider the table below

FUNCTION DERIVATIVE ANTI-DERIVATIVE  (INTEGRATION)
y=x2 y1=2x edu.uptymez.com=x2+c
y=x3 y1=3x2 edu.uptymez.com=x3 +c
y=4 y1=0 edu.uptymez.com=c
edu.uptymez.com y1=xn edu.uptymez.com=edu.uptymez.comxn+1+c

 

edu.uptymez.com

Integral notation

If y is the function of x, then edu.uptymez.comis known as integration of y with respect to x

The integral sign cannot divorced with dx if we are integrating with respect to x.

Generally

If xn is integrated with respect to xn then

edu.uptymez.com=edu.uptymez.comxn+1 + c

Examples

Find

           a)     edu.uptymez.com

        Solution

edu.uptymez.com=edu.uptymez.com x1+1 + c

edu.uptymez.com =edu.uptymez.com+c


b)   edu.uptymez.com

     Solution

      edu.uptymez.com=edu.uptymez.comx2+1 + c

                =edu.uptymez.com+ c


c)    edu.uptymez.com dv

          Solution

       dv = edu.uptymez.com

          =edu.uptymez.com v2+1 + edu.uptymez.com v1+1 + v + c

         =  edu.uptymez.com edu.uptymez.com + edu.uptymez.com edu.uptymez.com + v + c

EXERCISE

Integrate the following

1. edu.uptymez.com

2.  edu.uptymez.com

3.  edu.uptymez.com

4. edu.uptymez.com

Solution

1. edu.uptymez.com

   edu.uptymez.com

edu.uptymez.com

  =  edu.uptymez.com edu.uptymez.com + 7 edu.uptymez.com edu.uptymez.com – 3x + c

  = edu.uptymez.com edu.uptymez.com + 7 edu.uptymez.com edu.uptymez.com – 3x + c

2. edu.uptymez.comdx

      edu.uptymez.com

= edu.uptymez.com edu.uptymez.com + edu.uptymez.com 7edu.uptymez.com + c

= edu.uptymez.com + edu.uptymez.com edu.uptymez.com + c

= edu.uptymez.com edu.uptymez.com  -7edu.uptymez.com + c

2. INDEFINITE INTEGRALS

Is an integral which does not have limits at the ends of the integral sign.

An arbitrary constant must be shown

e.g. edu.uptymez.com ,edu.uptymez.com, edu.uptymez.com e.t.c

Example

Integrate the following with respect to  X

1.  5edu.uptymez.com-7x+8

2.  2edu.uptymez.com –  edu.uptymez.com

3.  4edu.uptymez.com

Solution

1.     1.edu.uptymez.com

= edu.uptymez.comedu.uptymez.com edu.uptymez.com + 8x + c

 = edu.uptymez.com edu.uptymez.com – edu.uptymez.com edu.uptymez.com + 8x + c

      2. 2edu.uptymez.com –edu.uptymez.com

edu.uptymez.com – edu.uptymez.com

edu.uptymez.com + edu.uptymez.com + c

 edu.uptymez.com edu.uptymez.com + edu.uptymez.com + c

Or

edu.uptymez.com ( edu.uptymez.com )3 + edu.uptymez.com + c


3.      edu.uptymez.com dx

                Let u=edu.uptymez.com

                     u2=3x+1

                2udu=3dx

                  dx = edu.uptymez.comdu

edu.uptymez.com dx =  edu.uptymez.com

                         = edu.uptymez.com edu.uptymez.comdu

                        = edu.uptymez.com edu.uptymez.comdu

                        = edu.uptymez.com x edu.uptymez.com + c

edu.uptymez.com

But u =edu.uptymez.com

 edu.uptymez.com

 edu.uptymez.com

EXERCISE

Integrate the following

1.  edu.uptymez.com – 5edu.uptymez.com + 12) dx

2. edu.uptymez.com

3. edu.uptymez.com

4. edu.uptymez.com

Share this post on: