ADVANCED MATHEMATICS FORM 5 – ALGEBRA

Share this post on:

Roots of a polynomial function

If edu.uptymez.com and edu.uptymez.com are roots of quadratic equation

Then (x – edu.uptymez.com) (x – β) = 0

      x2 – βx – edu.uptymez.comx + edu.uptymez.comβ = 0

            x2 – (β +edu.uptymez.com) x + edu.uptymez.comβ = 0

Given a quadratic equation as

            ax2 + bx + c = 0, where a, b, c, are constant

            edu.uptymez.comedu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Summary

A quadratic equation is given by

x2 – (sum of factors) x + products of factors = 0

Example

1. Given edu.uptymez.com and β as the roots for 4x2 + 8x + 1 = 0 form an equation whose   roots are edu.uptymez.com2 β and β2edu.uptymez.com 

            Solution

            Sum of roots edu.uptymez.com2 β + β2  edu.uptymez.com = edu.uptymez.com β (edu.uptymez.com + β)

            Products of root are (edu.uptymez.com2 β) (β2edu.uptymez.com)

                                                           =edu.uptymez.com3 β3

                                                           = (edu.uptymez.com β) 3

                                   (edu.uptymez.com2 β) (β2edu.uptymez.com) = (edu.uptymez.com β) 3

            The given equation can be written as

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

   The required equation is
edu.uptymez.com=0


edu.uptymez.com

2.   The equation 3x2 – 5 + 1 = 0 has roots edu.uptymez.com and β

            a) Find values of edu.uptymez.com

            b)   Find the values of edu.uptymez.com 

                           Solution

                        edu.uptymez.com + β = edu.uptymez.com        and edu.uptymez.comβ = edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

Roots of cubic equations

Ifedu.uptymez.com, β, edu.uptymez.com are roots of a cubic equation then

(x –edu.uptymez.com)(x – β)(x – γ) = 0

(x2edu.uptymez.comx – βx + edu.uptymez.comβ) (x – γ) = 0

x3 – γx2edu.uptymez.comx2 + edu.uptymez.comγx – βx2 + βγx + edu.uptymez.comβx – edu.uptymez.comβγ = 0

x3 – (edu.uptymez.com + β + γ) x2 + (edu.uptymez.comγ+ βγ + edu.uptymez.comβ) x – edu.uptymez.comβγ = 0

            x3 – (edu.uptymez.com + β + γ) x2 + (edu.uptymez.comγ + βγ + edu.uptymez.comβ) x – edu.uptymez.comβγ = 0

            Given cubic equation can be written as

            ax3 + bx2 + cx + d = 0

            edu.uptymez.com

            Equating coefficients of x2, x and the constant terms

            iedu.uptymez.com + β + γ = edu.uptymez.com-; sum of roots                                                                                                                             

            ii) edu.uptymez.comγ + βγ + edu.uptymez.comβ = edu.uptymez.com; sum of products of roots                                                                                           

            iii) edu.uptymez.comγβ = edu.uptymez.com; products of roots               

Examples

1. The equation 3x3 + 6x2 – 4x + 7 = 0 has rootsedu.uptymez.com, β, γ. Find the equations with roots

            a)edu.uptymez.com

Solution

            From

             x3 – (sum of factors) + (sum of products of factors) – products = 0

            X3 – (sum of factors) x2 + (sum of products of products of factors) x –      products = 0

edu.uptymez.com
edu.uptymez.com

            From the equation 3x3 + 6x2 – 4x + 7 = 0

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

2.   If the roots of the equation 4x3 + 7x2 – 5x – 1 = 0 are edu.uptymez.com, β and γ find the   equation whose roots are

            a)edu.uptymez.com + 1, β + 1, γ + 1           b) edu.uptymez.com2, β2, γ2

            Solution

                        4x3 + 7x2 – 5x – 1 = 0
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Share this post on: