MATHEMATICS FORM 1 – ALGEBRA

Share this post on:

Algebra is a study which deals with situations whereby some values unknown. Normally these unknown are represented by letters. Those letters are also referred to as variables.

Algebraic expression

An expression – is a mathematical statement which consists of several variables. An expression can only be simplified, that is we cannot find values of the variables (s) on it.

Examples

1. a + 2

2. x + 3y + 9z

3.16p – qp

4. a + b + c + d

5. 40

An equation

An equation is formed when two expression are joined by an equal sign

E.g

i) 2x – y = 16

ii) x + 2 = 6 – 5

iii) 3y + xy = 9

Each member of an equation or expression is called Term

Coefficient

When a number is multiplied by a variable (s) that number is called coefficient of that variable

Example

What is the coefficient of the variables in the following?

a) 6x – 8p + y

b) edu.uptymez.com– k + 3d

c) 2a + 3b – c

Solutions

Coefficients of   a)   x is 6

                             y is 1

                             P = -8

                         b) K = -1

                             d = 3,
                            edu.uptymez.com = 1

                        c)  a = 2

                             b = 3

                              c = -1

Addition and subtraction of algebraic expression

Addition and subtraction of algebraic expression can be done by adding or subtracting like term.

Like terms are those terms which has identical (same) variables

Examples

1. 2a + 4a = 6a

2. 5a + 16a = 21a

3.  2x + 10x – 3x = 9x

 
 

Examples: simplify the expression

3n – 7n + 12n

Solution

-4n + 12n

12n – 4n

= 8n

Examples: simplify

6m – 4 – 2m + 15

Soln

6m – 2m – 4n + 15

= 4m + 11

 
 

Example: simplify 4x + 6y – 3x + 5y

Solution

4x – 3x + 6y + 5y

= x + 11y

Coefficient: y = 11

                   x = 1

            Number of terms = two

Exercise 7.1

1.  Simplify each of the following expressions and after simplifying state

            a. the number of terms

            b. the coefficient of each of the terms

            i) n + n + n + n + n + k + k + k + x + x = 5n + 3k + 2x    

Solution                         

(a)  There are3 terms

(b)  Coefficient of “n” is  5

Coefficients of “y” is 3

Coefficients of “x” is 2

ii) 3x + 4y – 7z + 3x – 7y + 2z
         
Solution    
     a) There are 3 terms

            6x – 3y – 5z     
  b) coefficients of x is 6

       Coefficients of y is -3

       Coefficients of z is -5

            iii) 3edu.uptymez.com x + 7x – edu.uptymez.com x =

                                 Solution

            edu.uptymez.com

                                                edu.uptymez.com

                                                                                   
 

a) There is 1 term
b) Coefficient of x is 10edu.uptymez.com

Simplify each of the expressions in numbers 2 – 6

2.  12m + 13m

      12m 
  +  13m   

      25m   = 25m

3.    5y + 7y – 4y

        12y – 4y

            = 8y

4.   24w – 28w

        -28w + 24w                                                                                                              

  =  -4w 

5.    15n – 9n

       15n – 9n

             =  6n

6.   4k – k + 3k

       3k + 3k

          =  6k

7.   8y – 3 – 7y + 4

      8y – 7y – 3 + 4

                y + 4 – 3

                 y + 1

                  = y+ 1

8.    14x + 8 – 3x + 2

        14x – 3x + 8 + 2

                =11x + 10

9.   3a – 5b – 7a + 6c + 7a + 8b

        3a – 7a + 7a – 5b + 8b + 6c

                =3a + 3b + 6c

10.  4x – 6y + 7x + 2y

        4x + 7x – 6y + 2y

                 =11x – 4y

11.   3x + 4 + 8x – 4 – 11x

         3x + 8x – 11x + 4 – 4

          11x – 11x + 4 – 4

                 0 + 0

                   = 0

12.   8m + 0.4m – 2 – 6m + 8

          8m + 0.4m – 6m – 2 + 8

          8.4m – 6m + 6

             = 2.4m + 6

Multiplication and division of algebraic expression

Example:1) Multiply a – 2b + 6ab by 12xy

Solution

(a – 2b + 6ab) x 12xy

= 12axy – 24bxy + 72abxy

Examples:2) Re – write without brackets

–      16a (-2mn + 9xb – 3kbc)

Solution

            -16a (-2mn+9xb-3kbc) = (-16ax-2mn) + (-16a x 9xb) + (-16a x -3kbc)
                                              = 32amn + -144axb + 48abck
                                              = 32amn – 144axb +48abc

Example:3) divide 36xyz – 48xwz – 24xz by 12z

Solution
(36xyz – 48xwz – 24xz) ÷ 12z

   edu.uptymez.com

Exercise 7.2

1. Complete the following

    60xy – 30y + 90z = 30 (    )
  Solution

 60xy – 30y + 90z = 30 (2xy – y +3x)

2. Simplify i) xy + yz + 2xy – 3zy

               ii) 8m ÷ 2 + 3mn ÷ n

Solution

i) xy + yz + 2xy – zy  xy+yz +2xy – zy = xy + 2xy +yz – 3zy
                                                             = 3xy – 2yz

                                        
 

ii) 8m ÷ 2 + 3mn ÷ n

            4m + 3m

            (4 + 3) m

               =7m

3. Simplify the following

i)   5mn – 3mn

        = 2mn

ii)   xyz + 3xy + 4zx – zyx

            = xyz – zyx + 3xy + 4zx

            = 0 + 3xy + 4zx

            = 3xy + 4zx

iii)  3 (2n + 3) + 4 (5n – 3)

            Solution

            6n + 9 + 20n – 12

            6n + 20n + 9 – 12

                        =26n – 3

iv)   abc + bac – cab

            Solution

            abc + abc – abc

            abc – abc + abc 

            abc + 0

            = abc

v)  2 (5x + 3y) + 3(3x + 2y)

            Solution

            10x + 6y + 9x + 6y

            10x + 9x + 6y + 6y

                        = 19x + 12y

vi)   m (2n + 3) + n (3m + 4)

            Solution

            2nm + 3m + 3mn + 4n

            2nm + 3mn + 3m + 4n

            = 5mn + 3m + 4n

vii)  x (y – 5) + y (x + 2)

            Solution

            xy – 5x + yx + 2y

            xy + yx – 5x + 2y

                = 2xy – 5x + 2y

edu.uptymez.com

ix)  Pq -2qp + 3pq – 2qp

             Solution

            Pq + 3pq – 2qp – 2qp

            4pq – 4pq

                = 0

x)  (4x + 8y) ÷ 2 + (9xw + 4xy) ÷ w

            solution

           edu.uptymez.com

xi)   Multiply 6a – 5b by 3x

            Solution

            3x (6a – 5b)  =  3x x 6a – 3x x 5b
                                = 18ax – 15bx

                                 = 18ax – 15bx      

Equations

An equations is a mathematical statement which involves two expression connected or joined by an equal sign
So we define an equation also as statement of equality e.g. 2y – 6 = 3x + 12         
The values of variables can be found in equation if the number of equations is equal to the number of unknown.

FORMULATION OF AN EQUATION

There are three steps to follow when formulating an equation which are;

i) Understand the problem/question, what it is asking for

ii) Let the unknown be represented by a variable

iii) Formulate the equation using the given information
     

 Signs,  words or phrase used when formulating an equation:-

            +         Addition, sum of, increase by, greater than, plus, taller than, more than

            –          Difference, subtract, decrease, less than, shorter than.

            ×          Multiplication, times, products.

            ÷          Division, divided, Quotient.

            =          Equals, is, given, result.

 
 

Example 01

1. The age of the father is equal to the sum of the ages of his son and    daughter. If the son’s age is thrice the age his sister, formulate an equation.

            Solution

            Let y be the father age

            And x be the age of the daughter

            The age of son = 3x

            y = 3x + x

               y = 4x

2. The sum of two numbers is 20. If one of the number is 8 formulate an equation.

            Solution

            Let one of the number be x

            And the other number = 8

             x + 8 = 20

3.   A girl is 14 years old, how old will she be in x years time

            Solution

            A girl = 14 years

Let “y” be a girls age in x years time.

            In years time = + x

            y = 14 + x

4.  The difference between 24 and another number is 16, form an equation

            Soln
           
            Let another number = x

               24 – x = 16

Exercise 7.3

Formulate equations for each of the following

1.  Five times a number gives twenty

            Soln

            5 edu.uptymez.com x= 20

            5x = 20

2.   The difference between 123 and another number is 150

            Solution

             let another number = x
            
              Then x – 123 = 150

               x – 123 = 150

 
 

3.   The sum of 21 and another number is 125

            solution

          let another number = y

          Sum means (+)
   
          21 + y = 125

           21 + y = 125

4.   When a certain number is increased by 15, the result is 88

            solution
         
         Let the number be x

         Then x + 15 = 88

             x + 15 = 88     

5.  When 99 is increased by a certain number the result is 63

            Solution

        Let the number = y

        Then   99 + y = 63

            99 + y = 63

6. The product of 12 and another number is the same as two times the sum of 12 and the number

            Solution

           Let the number be x

           Then 12 x x = 2 x (12 + x)
 
            12x = 24 + 2x

7.A number is such that when it is double and 8 added to it, the result is the same as multiplying the number by 3 and subtracting 7.

            solution
      
          Let the number be x

          Then x + x + 8 = x x 3 – 7

           2x + 8 = 3x – 7

8.  When 36 is added to a certain number, the result is the same as  multiplying the number by 5.

            solution

        Let x be the number
 
        Then x + 36 = x x 5

         x + 36 = 5x

9. If John is n years old and is 6 years older that James older, write an expression of the sum of their ages.

            Solution

Let “J” be john, and “Q” be James and “N” be the year

       Let Q = q years

              J = n + 6 years

    The sum of their age = q + n + 6

           = q + n + 6
 

10.   When the sum of n and (n + 3) is multiplied by 5 the result half the product of the two numbers.

        Write the expression of this statement:-

            Solution

          (n + (n +3) x 5 = ½ (n + (n +3) )

         (2n + 3) x 5 = ½(2n + 3)
         
         edu.uptymez.com

SOLVING FOR EQUATIONS

Solving means finding the value of the unknown in the equation

Example 1

1. x + 5 = 8

            Solution

            x + 5 = 8

            x + 5 – 5 = 8 – 5

            x + 0 = 3

            x = 3

2.  x – 8 = 15

           x – 8 + 8 = 15 + 8

           x = 23

3. 3x – 5 = 7

            3x – 5 + 5 = 7 + 5

                     3x = 12

                    edu.uptymez.com                                                                                                     

        x = 4

4.     edu.uptymez.com+ 3 = 12

solution;

multiply 2 both side       

edu.uptymez.com   

5.   edu.uptymez.com (3x – 2) = 10

            Solution
           
          edu.uptymez.com

6.  edu.uptymez.com = 2

            Solution

            edu.uptymez.com = edu.uptymez.com

            8 edu.uptymez.com 1 = (3x – 2)edu.uptymez.com

                        8 = 6x – 4

            8 + 4 = 6x – 4 + 4
    
                      12 = 6x

                        edu.uptymez.com = edu.uptymez.com

                        x = 2

         7.   edu.uptymez.com – edu.uptymez.com = 4

            Solution

            edu.uptymez.com                                                                                                            

            2m = 4 x 15

              2m = 60
             edu.uptymez.com

              m= 30

         8.   edu.uptymez.com + edu.uptymez.com = 5

         Solution

            edu.uptymez.com                                                                                                                       

            10x = 5 x 8

             10x = 40

            edu.uptymez.com                                                                                                                         

            x = 4

9.   2x – 5 = 3x – 8

            Solution

3x-8=2x-5

3x-2x=8-5      

              x = 3

10.  4 – 3t = 0.3t – 5.9

            Solution

            4 + 5.9 = 0.3t + 3t

            9.9 = 3.3t

            9.9 = 3.3t  
            3.3    3.3   

                t = 3

11.  edu.uptymez.com  edu.uptymez.com+ edu.uptymez.com

            Solution

            edu.uptymez.com

        Multiply by 8 both side

edu.uptymez.com

12.  edu.uptymez.com = edu.uptymez.com – edu.uptymez.com solve for x

            Solution

            edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

            edu.uptymez.com

            7edu.uptymez.com

            14x-7 = 9x

             14x -9x =7

              5x = 7

              edu.uptymez.com

     x = edu.uptymez.com

   EXERCISE 7.4

Solve the following equations

1.   x + 12 = 25
       
       Solution

          x = 25 – 12

            x = 13

2.  edu.uptymez.com = edu.uptymez.com                                                                                                                          

        x = 5

3.  2x + 12 = 25

            Solution

            2x + 12 – 12 = 25 – 12

                        2x + 0 = 13

                        edu.uptymez.com                                                                                                                                   

                        edu.uptymez.com

4.  x – 8 = 8

    Solution

            x– 8 + 8 = 8 + 8

            x = 16

5.  x = 5edu.uptymez.com 5                                                                                                                   

            Solution

            X = 5edu.uptymez.com 5

            X = 25

6.  2x – 8 = 8

            Solution

            2x =8+8

            2x = 16

            edu.uptymez.com= edu.uptymez.com                                                                                                               

            x = 8

7.  3x – 3 = 15

            Solution

            3x – 3 + 3 = 15 + 3

            edu.uptymez.com                                                                                                                     

            x =6

8.  edu.uptymez.com – 3 = 5                                                                                                                    

            Solution

      edu.uptymez.com    

9.   0.2x + 7 = 9

            Solution

            0.2x + 7 – 7 = 9 – 7

            edu.uptymez.com                                                                                                               

                        x = 10

10.  0.6x – 5 = 7

            Solution

            0.6x – 5 + 5 = 7 + 5

            edu.uptymez.com                                                                                                        

             x = 20

11.    edu.uptymez.com + 3 = 5                                                                                                                    

            Solution

           edu.uptymez.com

 
 

12.   4x – 7= 7

            Solution

            4x = 7 + 7
       
            4x = 14

            edu.uptymez.com = edu.uptymez.com                                                                                                                               

            edu.uptymez.com

13.  edu.uptymez.com= 14                                                                                                                    

            Solution

          edu.uptymez.com

14.   edu.uptymez.com                                                                                                                    

            Solution

            edu.uptymez.com

15.  edu.uptymez.com= 6                                                                                                                              

            Solution

            edu.uptymez.com = 6 x 5                                                                                                          

             edu.uptymez.com=                                                                                                                  

            x = 10

16.        edu.uptymez.com                                                                                                 

            Solution

            edu.uptymez.com                                                                                                    

            3x = 25 + 1

            edu.uptymez.com =                                                                                                                   

            edu.uptymez.com

17.   edu.uptymez.com = 10                                                                                                                        

            edu.uptymez.com
         
             5 = 10x  

            edu.uptymez.com                                                                                                                        

            edu.uptymez.com

2.         18.               edu.uptymez.com 10      

                                                                                                           
 

            Solution

            edu.uptymez.com                                                                                                                     

            5 x 1 = 10 (x + 1)

            5 = 10x + 10

            5 – 10 = 10x

           edu.uptymez.com                                                                                                 

           edu.uptymez.com

19.    edu.uptymez.com     

       solution                                                                                                    

            1 (x + 5) = 3 (x – 1)

            x+ 5 = 3x – 3

            3 + 5 = 3x – x

            edu.uptymez.com                                                                                                                                   

                 x = 4

        20.    edu.uptymez.com

            Solution

            edu.uptymez.com                                                                                                                     

            1 (x + 5) = 5 (x – 1)

            x + 5 = 5x – 5

            5 + 5 = 5x – x

            edu.uptymez.com                                                                                                                              
             edu.uptymez.com

 
 

Solving word problems

E.g. 1

If John has hundred shillings, how many oranges can be buy if orange costs 50 shillings?

Solution

            Let k be the number of oranges John can buy but one orange costs 50shs.

            50 x k = 200

            edu.uptymez.com                                                                                                                   

               K = 4

            John can buy 4 oranges

Example 2:

A father age is 4 times the age of his son. If the sum of there is fifty years Find the age of the son.                                 

            Solution

            Let the age of father be y

            Let the age of the son be x

            Therefore the age of the father is y = 4x

            Their sum = 4x + x = 50
                                   5x = 50

                               edu.uptymez.com                                                                                                                                 

            The son’s age is 10years old

Example 3:

The sum of 2 consecutive numbers is 31. Find the smaller numbers

            Solution

            Let the smaller number be x

            Let the bigger number be x + 1

                        x+ x + 1 = 31
                         2x + 1 = 31
                          2x = 31 – 1
                           2x = 30

                        edu.uptymez.com                                                                                                         

                         The smaller number is   15

Exercise 7.5       

1.  If 4 is added to a number and the sum is multiplied by 3 the result is 27. Find the number.

            Solution

            Let the number be ‘b’

         (b + 4) x 3 = 27

          12 + 3b = 27

                  3b = 15

                    b= 5

2. Okwi’s age is six times uli’s age.15 years hence Okwi will be three times as old as Uli. Find their ages.

            Solution

            Let the age of Uli be x

            Okwi = 6x

            Okwi                           Uli

            6x                                x

            6x + 15                       x + 5

            6x + 15 =                   3x + 45

fifteen years to come
           6x + 15                         15 + x
Then  6x + 15 = 3(x + 15)
             6x + 15 = 3x + 45
             6x – 3x = 45 – 15
              3x = 30
                edu.uptymez.com
                 
                  x = 10

             Okwi = 60 years

                Uli = 10 years

 
 

3 . The sum of two consecutive odd numbers is 88. Find the numbers

            Solution

            Let the number be n

            n + 2, n + 4

            n + 2 + n + 4 = 88

            2n + 6 = 88

            edu.uptymez.com

            n = 41

            The smaller number = 41 + 2 = 43

            The bigger number = 41 + 4 = 45

4.  Obi’s age is twice Oba’s age. 4 years ago Obi was three times as old as Oba. Find their ages.

            Solution

            Oba’s age let it be x

            Obi                  Oba

            2x                    x

            2x – 4             x – 4

2x – 4 = (x – 4) 3

 2x – 4 = 3x – 12

                          8 = x

            Obi = 16 years old.

            Oba = 8 years old.

 
 

Inequalities in one unknown

The following rules are useful when solving inequalities

i) Adding or subtracting equal amounts from each side does not change the inequalities sign

            Example : solve x – 2 ≤ 4

                        Solution

                        X – 2 + 2 ≤ 4 + 2

                                    X ≤ 6

            Example 2:    2x + 4 ≥ 16   

                     Solution

                      2x + 4 – 4 ≥ 16 – 4

                                    edu.uptymez.com ≥ edu.uptymez.com                                                                                    

                                    X ≥ 6

ii)  Multiplying or dividing by same positive number each side change the inequality sign

            Example:   solve 3y + 16 < 50

                                    Solution

                                    3y + 16 – 16 < 50 – 16

                                                edu.uptymez.com,edu.uptymez.com                                                                                                               

Example 2:edu.uptymez.com (2x – 4) ≥ 9

                 edu.uptymez.com (2x – 4) ≥ 9 x 3

                  2x – 4 + 4 ≥ 29 x 3

                    edu.uptymez.com ≥     edu.uptymez.com                                                                                

                      X ≥ 3edu.uptymez.com 

 
 

iii)   Multiplying or dividing each side by negative number CHANGES the   inequality sign.

                        Example. Solve the inequality

                        (edu.uptymez.com(4 – 3x) < 4                                                                                                                      

                        Solution

                        2 (4 – 3x) < 4 x 3

                        2 (edu.uptymez.com) < edu.uptymez.com                                                                                                                  

                        4 – 3x < 6

                        -3x < 6 – 4

                             edu.uptymez.com                                                                                                       

            The sign changes

                           edu.uptymez.com        

Examples 1:   Solve -4x + 3≥edu.uptymez.com

                 -4x + 3≥  edu.uptymez.com
                 -4x ≥ edu.uptymez.com-3
                   
                   -4x ≥ –edu.uptymez.com

                 edu.uptymez.com ÷ -4

                     x  ≤  edu.uptymez.com                                                                                

                     edu.uptymez.com

Examples 2.  solve  edu.uptymez.com                                                                                          

                                    Find their L.C.M

                                    3 edu.uptymez.com > edu.uptymez.com x 4

                                    3 (2x – 6) 4 (3 – 2x)

                                    6x – 18 > 12 – 8x

                                    6x + 8x > 12 + 18

                                                edu.uptymez.com                                                                               

                                                 X > edu.uptymez.com

BINARY OPERATIONS

     Is an operation denoted by *, which describe the formula of a given variables.
     

         if P * q = 5pq – p: Find

i)   2 * 3 =

            p = 2 and q = 3

            2 * 3 = 5 (2) (3) – 2

                        = 30 – 2 = 28

                        2 * 3 = 28

ii) (1* 2) * 3

            Solution

            (1 * 2) =    p = 1 and q = 2

            In (1 * 2) = 5 (1) (2) -1 = 9
                           =10-1
                            =9
                    
12=9

                        9 * 3 = p * q

                        9 * 3 = 5 (9) (3) – 9

                        = 135 – 9

                        = 126

                        (1 * 2) * 3 = 126

 
 

iv) (2 * 1) * (3 * 2)

            Solution

            2 * 1 =   p = 2 and q = 1

              5 (2) (1) – 2

            2 * 1 = 10 – 2

                        = 8     

            3 * 2 =    p = 3 and q = 2

            5 (3) (2) – 3

            15 x 2 – 3

            3 * 2 = 30 – 3

            32= 27

            2 * 1 = 8

            3 * 2 = 27

            8 * 27

            8 * 27 =    p = 8 and q = 27

 5 (8) (27) – 8

40 x 27 – 8

            1080 – 8

           Then: 8 * 27 = 1072

 (2 * 1) * (3 8 2) = 1072

 
 

iv.  if   (t * 5) = 50  find t

            Solution

            t * 5 =  p = t and q = 5

            t * 5 = 5 (t) (5) – t

            15t – t

            24t=50

            t * 5 = 24t

edu.uptymez.com = edu.uptymez.com                                                                                                                       

            t = edu.uptymez.com

edu.uptymez.com

Share this post on: