MATHEMATICS FORM 4 – AREAS AND VOLUMES

Share this post on:

AREAS

CASE

1.Right angled triangle Area = ½ b x h
         edu.uptymez.com

 

2.      Triangle with altitude that lies within the triangle

 

         edu.uptymez.com

Area 0f      Δ ABC = ½ bh + ½ d h

                       = ½ h(b + d)
 
                       = ½ hL

 

3.      A triangle where the altitude of triangle lies outside of the triangle.

            edu.uptymez.com

Area of   ABC = area of triangle BCD – area of triangle ABD

                    = ½ h (b+d) – ½ h d

                    = ½ h e –  ½ h d

                    = ½ h (e-d)

In all the triangle the formula is the same.

Thus if you were given a triangle with a base b and its corresponding height (altitude) h, its area is equal to ½ b h

 

 

CASE II

We can also use the knowledge of trigonometrical ratios.

      edu.uptymez.com
 
Area of triangle ABC = ½  b h

                             = ½ b a sin c

                    Sin A = h/c

                           h= c sin A

the area of triangle ABC = ½ b c sin A

Example

1.      The length of two sides of a triangle are 8cm and 10 cm. find he area of the triangle, if the included angle is 30 0.

 

Solution;

     edu.uptymez.com   
Area = ½ x 10 x 8 x sin 300

      = 40 x ½Cm2

      =20cm2

2. The area of triangle ABC with sides a,b,c.

 

edu.uptymez.com
Area of triangle ABC

             = ½ c b sin A

             = ½ a c sin B

             = ½ a b sin C

Example

The base of triangle PQR is 17 cm long. If corresponding height is 20cm, find the area of the triangle.


Solution;

 

Area of triangle PQR = ½ b h

                             = ½  x 17 x 20

                             = 170 cm2

Qn. 9

what is the area of  the paper required to make the kite shown in the figure

 

 

 

edu.uptymez.com

 

Solution

 

(i) = ½ x 20 x 20 x sin 40º

= 200 x 0.6428

=128.56cm2

 

(ii)= ½ x 10 x 10 x sin 500

= 50 x 0.7660

= 38.3 cm2

 


AREA OF TRAPEZIUM

edu.uptymez.com

Area of trapezium ABCD = area of triangle ABC + area required of triangle ADC

= edu.uptymez.comL 1 h + edu.uptymez.com  L2 h

= edu.uptymez.com h(L1 + L2)

Examples.

1.      Calculate the height of trapezium with area 84 square units and bases 16 units  and 8 units as shown ;

Area = ½ h ( b1+ b2)
    84 = ½ h ( 16+ 8)
84 = 12 h
h = 7 units.
 
 
AREA OF PARALLELOGRAM
 
edu.uptymez.com
Area of parallelogram ABCD = area of  ΔABD + ΔBCD
                                                   = ½ A B h + ½ C D h
                                                   = ½ h edu.uptymez.com

                                                   = ½ h edu.uptymez.com

                                                   = h x edu.uptymez.com

            
Area of parallelogram = bh

 
AREA OF RHOMBUS
edu.uptymez.com
                                 A rhombus is also a parallelogram.
Area = bh
We can also find the area of the rhombus by considering the diagonals of a rhombus. 

 
edu.uptymez.com
                                 AC and DB are the diagonals.
Area of triangle ABC = area of triangle ADC
Area of rhombus ABCD= 2 (area of triangle ABC)
                          OR  = 2 ( area of triangle ADC)
edu.uptymez.com

EXERCISE

1.    1.  Calculate the area of a rhombus whose diagonals are 12dm and 10 dm.

 

 

2.   2.   Calculate the area of the trapezium ABCD shown in the figure below

edu.uptymez.com

            edu.uptymez.com

 

 

 

3.   ABCD is a parallelogram with A= 10cm, BAD = 600. Calculate the area of the parallelogram.

edu.uptymez.com

edu.uptymez.com

4.         4.  Find the area of trapezium ABCD shown in the figure below;
edu.uptymez.com
    Sin 360 = h/ s
       
Solution4:

 
     h = 0.5878x 5 cm
 
     h= 2.939 cm
 
    area = ½ x 2.939 (7+5)
 
     = ½ x 2.939(12)
 
     = 17.634cm2
 
AREA OF A RECTANGLE

 
 
edu.uptymez.com
 edu.uptymez.com
 
AREA OF SQUARE
 
edu.uptymez.com
 A square is a rectangle with equal sides.
Area of triangle ABC = area of triangle ADC
edu.uptymez.com

 
Also we can find the area of a square by considering the diagonals.
 
edu.uptymez.com

ΔABC =  ΔADC
Area of triangle ABC = Area of triangle ADC
edu.uptymez.com

Example

1.      Find the area of square in which diagonals have length of 12.5cm2


Solution

Area = ½ (length of diagonals)2

= ½ (12.5) 2

= 78.125cm 2

 TOTAL SURFACE AREA OF A RIGHT CIRCULAR CONE                                                              
Right circular cone Is the one whose vertex is vertically above the center of the base of the cone.

 

 

edu.uptymez.com

Total surface area of a cone = area of curved surface + base area.

 

BUT;
area of curved surface ( lateral surface ) = area of small triangles.
 If we consider our cone , AB, BC , CD and DC are approximated line segments, hence we have small triangles VAB,VBC , VCD and VDE.
Hence area of curved surface
  = ½ AB  x VA + ½ BC x VC + ½ CD x VC + ½ DEx VD
But VA= VB = VC = VD = VE
Area of curved surface    =  ½ AxBxL+ ½ BxCxL+ ½ xCx DxL+ ½ DxExL
                                         =  ½ L (AB+BC+CD+DE)
                                         =  ½ L (2πR)
                                        =  πRL
Total surface area =  πR2+ πRL
                              =  πR(R+L)
 
TOTAL SURFACE AREA OF A RIGHT CYLINDER


edu.uptymez.com

Total surface area of a right cylinder

= area of curved surface+ bases area.

= 2πRh + πR2

 

TOTAL SURFACE AREA OF A RIGHT PYRAMID

A right pyramid is the one which the slant edges joining the vertex to the corner of the base are equal.

edu.uptymez.com

 

Total surface area of a right pyramid

=area of triangle VAB+ VBC+VDC+VDA + area of the base.

= lateral surface + area of the base.

BUT

As VAB, VDC, VBC and VDA are isosceles triangles. Then VA,VB,VC and VD  are slant height.

Example

Consider the data below of a right pyramid. Find the total surface area of the pyramid.

Total surface area of  a pyramid

= area of laterals + base area

=area of  ΔVAB+  ΔVBC+ ΔVDC+ ΔVDA+ base area

 

edu.uptymez.com

 

EXERCISE

1.      The radius of a base of right circular cylinder is 7dm and height is 10 dm. find;

(a). The total surface area.

 

Solution:
 
edu.uptymez.com
The total surface area = 2πR (h+r)
                               = 2 x 3.14 x 7 dm (10+7)
                               = 74.732 dm2
2.  Calculate the lateral surface area of the right cone shown below.
 
edu.uptymez.com
    = πr(r+L)
   = 3.14×3.5x(3.5+1.6)
   = 3.14×3.5×19.5
   = 214.305cm2
 

 
THE TOTAL SURFACE AREA OF A RIGHT PRISM

A right prism is a prism in which each of the vertical edges is perpendicular to the plane of the base. an example of right prism is shown in the figure below where EABF, FBSG, HDCG and EADH are faces made up the lateral surface. and ABCD and EFGH are bases.

 
edu.uptymez.com

A right prism is a prism in which each of the vertical edges is perpendicular to the plane of the base. an example of right prism is shown in the figure below where EABF, FBSG, HDCG and EADH are faces made up the lateral surface. and EFGH are bases.
The total surface area of a prism ABCDEFG

= Area of lateral surface + base area
                 edu.uptymez.com
                  edu.uptymez.com

Example

Find the total surface area of a rectangular prism 12cm long,8 cm wide, and 5 cm high.
edu.uptymez.com

soln
Surface Area = BF(ABxBC)2

         =5( 12 x8) 2
         = 5cm x 192cm
         =960 cm2
 
Base area = 12×8 x2
             = 192 cm2 . : Total surface area = 240 cm2 +192 cm2 = 432 cm2

 
Exercise
1.      The altitude of a rectangular prism is 4cm and the width and length of its base are 12cm and 3 cm respectively. Calculate the total surface area of the prism.
 
2.      One side of a cube is 4dm. calculate
a.      The lateral surface area.
b.      Total surface area.
 
3.      Figure below shows a right triangular prism whose base is a right angles triangle. Calculate its total surface area.
edu.uptymez.com
4.      The altitude of a square pyramid is 5units long and a side of the base is 5 units long. Find the area of a horizontal cross-section at distance 2 units above the base.

Solution
 
edu.uptymez.com
 
 
            Answers

   Solution1(a)
         
          = 4(2+3) 2 +2(2×3)

                                  = 4×10 + 12
 
                                  = 40 + 12
 
                                  = 53cm2
  

                              Solution2.
       (a) Lateral area   = 2 (4+4+4+4)
 
                                =2x 16
 
                                =32dm2
 
        (b)Total surface area = 32 + 2(4+4)
 
                                       = 48 dm2
 

                      Solution3.

 
                                       =(AB2) + (BC2) = ( AC2)
 
                                       =62 + 82 = AC2
 
                                       AC=10
 
                                       = 8x10cm2= 80 cm2
 
 
 
                                      Area of triangle = ½ b h
 
                                      = ½ x 6 x 8 x 2
 
                                     = 48cm2
 
 
 
                                     Area of rectangle b = 10cmx10cm
 
                                               =100cm2
 
                                      Total surface area = 100cm2 + 48 cm2+ 80cm2
 
     
                                    =228cm2

 
                                      
                          Solution4.
                                    a2+b2=c2

 
                                    2.52+ b2= 52
 
                                   b2= 25-6.25
 
                                   b= 4.33=h
 
                    a2+b2=c2
 
                                 a2=251
 
edu.uptymez.com

 
A1= (½ x 5×4.33) x2
 
     =21.65cm2
 
A2=  x 2 x4.89×2
 
A2= 9.798
 
Area = 9.798+21.65 cm2
 
          =31.448cm2

AREA OF A CIRCLE

Consider a circle with several radii (r).
 
edu.uptymez.com
 
Re-arrange those pieces from a circle to form a parallelogram.
 
edu.uptymez.com
A= bh
    = ½ c r
½ c r = 2πr
Area of a circle = πr2
Area of a sphere = 4 πr2


 
LENGTH AND PERIMETER OF A RECTANGULAR POLYGON INSCRIBED IN A CIRCLE.
 
edu.uptymez.com                                                                                                                                                               
 

edu.uptymez.com
 
Consider triangle edu.uptymez.com

AO is perpendicular to AB
edu.uptymez.com           

 
edu.uptymez.com

 

               Sin 1800 /n = edu.uptymez.com
                              s= edu.uptymez.com
                              s= edu.uptymez.com
                              p=ns
                              p= n(dsin180Ëš)
 

 
AREA OF A RECTANGULAR POLYGON INSCRIBED IN A CIRCLE
 
                 
edu.uptymez.com
 
Area of a    ΔAOB = edu.uptymez.com edu.uptymez.comsinY
AOB = edu.uptymez.com r x r edu.uptymez.com

Area of regular polygon inscribed in a circle.= n (edu.uptymez.comr2 edu.uptymez.com )
                                                                                         

Exercise
1.  Find the length of one side of a regular nine –sided polygon inscribed in a circle of radius 10 cm2.
  
2. Find the radius of a circle which inscribes an equilateral triangle with perimeter 24 cm.

  
3.  Find the area of a 9-sided polygon inscribed in a circle with radius 5 cm.

 
 4.Find the area between two concentric circles.

  Answers

Solution 1.  
  edu.uptymez.com

 
  Solution2.


    edu.uptymez.com

  Solution3.

         Area = edu.uptymez.com n r2 sin edu.uptymez.com
                               
                  = ½ x9 x 25 x sin 40 0
                 =11.25 x 0.6428
                 =72.315cm2


     Solution4.
     Area = πr2
      = 3.14 x6x6 
     =113.04 cm2
     Area = πr2
      =3.14x 4×4
      =50.24cm2
      Area between circles = 113.04cm2 – 50.24cm2
        =62.80cm2
 

AREAS OF SIMILAR FIGURES

Similarity
Two polygons are similar when their corresponding angles are equal and corresponding sides are proportional.
 
                edu.uptymez.com
 
Similarity of polygons
If corresponding angles are equal, also if the corresponding side are proportional.
edu.uptymez.com =edu.uptymez.com = 500
edu.uptymez.com = edu.uptymez.com= 600
edu.uptymez.com = edu.uptymez.com = 70 0
  edu.uptymez.com=  10cm  = 2
               5cm
 
 edu.uptymez.com
 
Area of triangle ABC = ½x a x c sin B
Area of triangle PQR = ½ r p sin Q
 
Area of triangle ABC = ½ ac sin B
Area of triangle PQR   ½ r p sin Q
But Sin B = sin Q
edu.uptymez.com
 
Exercise.
 1. Two triangles are similar, A side is 6cm long. The corresponding side to the other is 20cm. if the area of the first is 90 cm2 . what is the area of the second?

 2. The ratios of the areas of two circles is 50: 72. If the radius of the smaller circle is 15 cm, find the radius of the larger circle

 3.  Two triangles are similar. A side of one is 2 units long . the corresponding side of the other is 5 units long. What is the ratio of their areas?

edu.uptymez.com
  5. Two polygons are similar. A side of one is 8 cm long . the corresponding side of the other is18 cm . the area of the first is 16cm2. Find the area of    the second.

 
6.  The ratio of the area of two circles is 50: 72. If the radius of the smaller circle is 15 cm, find the radius of the larger circle.

 
                
  Answers             
Solution1.

 edu.uptymez.com
 
 
Area of triangle ABC = K2
Area of triangle PQR
 
Where K = 6/20
edu.uptymez.com
   X=100cm2

90cm =  3   2
X          10
 

Solution 2
Area of small circle  =  K2
Area of large circle

Where K = 15/X

 
50 = 152
72     X
X= edu.uptymez.com
X = 18cm
 
 
Solution 3.
Area of triangle 1 = K2
Area of triangle 2
                            = (edu.uptymez.com)2
                            = edu.uptymez.com
Areas = 4:25
 
 
Solution4.
edu.uptymez.com = K2
K = edu.uptymez.com
 
The ratio of corresponding sides = 5:4.
 
                           Solution5.
Area of triangle 1 = K 2
Area of triangle 2
 

 edu.uptymez.com
 
Solution6.
Area of small circle = K 2
Area of big circle
edu.uptymez.com

edu.uptymez.com

Share this post on: