ADVANCED MATHEMATICS FORM 6 – COMPLEX NUMBER

Share this post on:

GRAPHICAL ADDITION AND SUBTRACTION

Consider Z and Z2 representing an Argand diagram

edu.uptymez.com

edu.uptymez.com

Taking edu.uptymez.com and edu.uptymez.com .The coordinates of C are

edu.uptymez.com

Hence edu.uptymez.com represented the complex number
edu.uptymez.com
 .

MODULUS AND ARGUMENT

Let edu.uptymez.com be the complex number which suggests that edu.uptymez.com represents edu.uptymez.com and A (a, b) is the point

edu.uptymez.com

r is the length of OA

edu.uptymez.com Is the angle between the positive x axis and edu.uptymez.com

edu.uptymez.com

OA is called the modulus of complex number edu.uptymez.com

i.e.

edu.uptymez.com

The angle edu.uptymez.com is called the argument of edu.uptymez.com and written arg(edu.uptymez.com)

edu.uptymez.com

Note:

The position of OA is unique and corresponds to only one value of edu.uptymez.com in the range edu.uptymez.com

An argument is also known as amplitude

      To find the argument of edu.uptymez.com we use edu.uptymez.com together with quadrant diagram

Example

Find the argument of each of the following complex numbers

a)edu.uptymez.com 

b)edu.uptymez.com 

c)edu.uptymez.com 

d)edu.uptymez.com

Solution
(a) 4+3i

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

Solution
(b)edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Solution
(c)-4-3i

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

Solution
(d)edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

EXERCISE

Represent the following complex numbers by lines on Argand diagrams. Determine the modulus and argument of each complex number

a) edu.uptymez.com

b) edu.uptymez.com


SQUARE ROOTS OF COMPLEX NUMBERS

Example

Find edu.uptymez.com  

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Example;

Given that edu.uptymez.comis a root of the equation edu.uptymez.com find the other two roots

Solution

Polynomial has real coefficient edu.uptymez.com and its conjugate is a root of the polynomial

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
To find the other factor of z3 – 6z2 + 21z – 26 =0
edu.uptymez.com

EXERCISE

1. Solve the following equation edu.uptymez.com

2. Given that edu.uptymez.com  express the complex number edu.uptymez.com  in polynomial form hence find resulting complex when edu.uptymez.com

Share this post on: