ADVANCED MATHEMATICS FORM 6 – COMPLEX NUMBER

Share this post on:

DEMOIVRE’S THEOREM

Demoivre’s theorem is a generalized formula to compute powers of a complex number in its polar form

Consider edu.uptymez.com from the earlier discussion we can find (Z)(Z)

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com

This brings us to Demoivres theorem

If edu.uptymez.com and n is a positive integer

Then

edu.uptymez.com

Proof demoivre’s theorem by induction.
Test formula to be true for n
edu.uptymez.com
Let us show that the formula is true for n = k+1
edu.uptymez.com
Since the formula was shown to be true for n = 1, 2 hence its true for integral value of n.

Example

1.   Find edu.uptymez.com

Solution

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

2.   From Demoivere’s theorem prove that the complex number  edu.uptymez.com is always real and hence find the value of the expression when n = 6

Solution

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

FINDING THE nth ROOT

Demoivere’s formula is very useful in finding roots of complex numbers.

If n is any positive integer and Z is any complex number we define an nth root of Z to be any complex number ‘w’ which satisfy the equation edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Examples

1.   Find all cube roots of -8

Solution

-8 lie on the negative real axis

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

2.   Solve edu.uptymez.com giving your solution in polar form

Solution:

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EXERCISE

1.   Find all fourth roots of 1.

2.   Evaluate edu.uptymez.com

Proving trigonometric identities using Demoivre’s theorem


Examples

Prove that

i) edu.uptymez.com

 ii) edu.uptymez.com

Solution

Note;

To solve such question you should be aware of the binomial theorem

i) edu.uptymez.comedu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

EXERCISE

Show that;

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Example

Find an expression for

i)edu.uptymez.com               ii)edu.uptymez.com

Solution

i) We know that edu.uptymez.comedu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

ii) edu.uptymez.comedu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

EXERCISE

Use Demoivre’s theorem to find the following integrals

a) edu.uptymez.com

b) edu.uptymez.com

c) edu.uptymez.com

Share this post on: