ADVANCED MATHEMATICS FORM 6 – COMPLEX NUMBER

Share this post on:

THE EULER’S FORMULA (THE EXPONENTIAL OF A COMPLEX NUMBER)

Euler’s formula shows a deep relationship between the trigonometric function and complex exponential

Since

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

Re organizing into real and imaginary terms gives.

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Hence if Z is a complex number its exponent form is edu.uptymez.com in which edu.uptymez.com 

edu.uptymez.com

Example

1. Write edu.uptymez.com in polar form and then exponential form

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

2. Express edu.uptymez.com in Cartesian form correct to 2 decimal places

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Note that;

The exponents follow the same laws as real exponents, so that

If edu.uptymez.comedu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ROOTS

Sometimes you can prefer to find roots of a complex number by using exponential form.

From the general argument edu.uptymez.com

If edu.uptymez.comedu.uptymez.com
edu.uptymez.com

Example

Find the cube root of Z = 1

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Example 2

Calculate the fifth root of 32 in exponential form

Solution

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

LOCI OF THE COMPLEX NUMBERS

Complex number can be used to describe lines and curves areas on an Argand diagram.

Example 01

Find the equation in terms of x and y of the locus represented by |z|=4

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

This is the equation of a circle with centre (0.0) radius 4

Example 02

Describe the locus of a complex variable Z such that edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

This is the equation of a circle with centre (2,-3), radius 4 in which the point  (x, y) lies on  and out of the circle.

edu.uptymez.com

Example 03

If Z is a complex number, find the locus in Cartesian coordinates represented by the equation edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

This is the needed locus which is a circle with centre (3, 0) and radius 2

Example 04

If Z is a complex number, find the locus of the following inequality

edu.uptymez.com

Solution

We consider in two parts

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

 

Share this post on: