MATHEMATICS FORM 1 – COORDINATE GEOMETRY

Share this post on:

Introduction

The position of points on a line found by using a number line, that is

 edu.uptymez.com

 
 

When two number lines one vertical and another one horizontal are considered one kept at 90o and intersecting at their zero marks, The result is called xy – plane or Cartesian plane. The horizontal one is called x – axis and the vertical is called y – axis.

Origin is the where the two axes that is x – axis and y axis (intersect)

 
 

Coordinates of a point

The position of a point in the xy – plane is given by a pair of in the form of ordered pair. Thus ordered pair is called coordinate. The coordinate of the point is therefore written in the form of (a, b), Where the first number ”a” is the value in the horizontal axis i.e x – axis b is the value in the y – axis

The value in the x – axis is also referred to as abscissa and y – axis is called ordinate. All distance in the xy – plane are measured the origin.

Examples write the coordinates of the following point A, B, C, D, E, F

           

edu.uptymez.com
                          
Solutions
The coordinates of the points are
A = (0,5)
B = (5,0)
C = (0,4)
D = (-5,5)

Exercise  10.1

1. a) Write down the coordinates of each of the labeled points in figure 9.2

    b) State the quadrant in which each of these points F, H, V and I belong

            edu.uptymez.com

                                                           
 

 
 

2. Draw axes on a graph paper and plot the points given below. Join in the order given with straight lines forming polygonal figures shape have you drawn in each case.

            a) (1, 1), (3, 1), (3, 3), (1, 3)

            b) (-2, 1), (2, 5), (2, -2)

            c) (3, 1), (5.4, 1) (4.3, 2), (3.3, 2)

            d) (5.5, 3.4), (6.5, 3.4), (6.8, 4.3), (6.0, 4.9), (5.2, 4.3)

            e) (1.5, -3), (6, 3), (1.5, 3), (-6, -3)

            f) (-1, 0), (-2, 2), (0, 1), (2, 2), (1, 0), (2, -2), (0, -1)

                                             
 

 SLOP/GRADIENT OF A LINE

Slope / gradient is the change in the vertical axis to the change in the horizontal axis.

                             edu.uptymez.com

 
 

         edu.uptymez.com

edu.uptymez.com

Example: Find the gradients of the lines joining
                        (a)     A (2, 4) and B (-2, 6)

                        (b )   A (-2, -2)   and B (2, -4)

                        (c)     A (0, -1)     and B (2, 3)

 
 

Solution

a.   Let (x1, y1) be (2, 4) and

            (x2, y2) be (-2, 6)

                        M=edu.uptymez.com                                                                                                     

                             edu.uptymez.com                                                                                                                     

b. let (x1, y1) be (-2, -2)

            (x2, y2) be (2, -4)

                  M =edu.uptymez.com                                                                                                                                        

                         edu.uptymez.com
                                = edu.uptymez.com 
                            m=   edu.uptymez.com

 
 

c.  A (0, -1) and B (2, 3)

            Solution

            Let (x1, y1) be (0, -1)

                 (x2,  y2) be (2, 3)

                M =edu.uptymez.com 
                     edu.uptymez.com= edu.uptymez.com       
                                                                                             

                      M = 2

 
 

Exercise 10.2

1.Plot pair of the following points on a graph paper and join them by straight line. For each pair, calculate the gradient of the line and state whether it is positive, negative, zero or undefined.

(a) (0,3), (2,5)
(b) (5,8), (4,1)
(c) (1,5), (4,7)
(d) (2,6), (5,3)
(e) (1,6), (3,-1)
(f)  (3,6), (-2,-1)
(g) (0,2), (6,2)
(h) (2,3), (-1,-3)
(i) (2,10), (2,0)
(j) (edu.uptymez.comedu.uptymez.com), edu.uptymez.com, 2)
(k) (-2,1), (4,3)
(l) (-4,4),(-3,3)
(m) (0,0), (-3,4)
(n) (99,6), (119,1)
(o) (0.64,-1.62, (1.36,-0.62))

                                                                                                                                                                        
 

           
 

                                                                                                                               EQUATION OF A LINE 

We have already discussed how to find the gradient of a line for example the gradient of the line joining points (2, – 4) and (5,0) is given as.

edu.uptymez.com

Since the two points are collinear.
we can find the equation of the line having any point on a line say (x,y) and any point,
then from
                          edu.uptymez.com
                      let (x1,y1) = (x,y), and (x2,y2) = (5,0)
                                  edu.uptymez.com
                                      edu.uptymez.com

                                      4(5-x) = 3x-y
                                       20-4x = -3y
                                          edu.uptymez.com
                                               
y = edu.uptymez.com – edu.uptymez.com

 
 

In general the equation of a straight line is written as y = mx + c. Where m – Is the slope of the line and c is ordinate of the y. called y- intercept
The point on the line (x,y) is called arbitrary point

Example: – find the equation of line passing through the points.

(12,-6) and (2, 6)

Solution
edu.uptymez.com
let (x,y)=(12,-6),
      (x2-y2)= (2,6)
            edu.uptymez.com
                   edu.uptymez.com
                     edu.uptymez.com
edu.uptymez.com
               edu.uptymez.com
                5(y-6)=-6(x-2)
                 5y-30=-6x+12
                  5y=-6+12+30
                   5y=-6x+42
                     edu.uptymez.com
                            edu.uptymez.com

(2)  Give that y = – edu.uptymez.com+ 6 find the gradient of this line

The gradient is    edu.uptymez.com

Example: find the equation of the line passing through the point (4, 6) and having a  slope -1/2 

Solution

(x,y) , (4,6) , M =  edu.uptymez.com

  edu.uptymez.com = edu.uptymez.com

2(y-6) = x – 4

2y – 12 = x – 4

2y = x + 8

edu.uptymez.com

X-intercept and y – intercept.

X-intercept is the point where a line meets (cuts) the x-axis, at the value of y (ordinate) is equal to zero.

That is to say the x-intercept is found by substituting y = 0 in the equation. Therefore for the equation y = mx + c.

Y = 0, 0 = mx + c

Mx + c = 0

Mx = -c

x= -c/m.

Therefore the coordinate of x-intercept is (-c/m, 0).

y- Intercept is the point where the line and the y- axis meet. All this point the abscissa is normally equal to zero. The x- intercept is found by setting. x=0

i.e  y = mx + c

      x=0

      y = m(0) + c

       y = c

      The intercept (0,c)

 The coordinate of the Y-intercept is (0,c)

Example : – a line L is passing through the points A(5 – 2) and  B(1,4).

Find

i.    The equation of the line in the form of

Y= mx +c and ax + by + c = o

ii.    The x and y intercept.

Solution: 
i.

edu.uptymez.com
edu.uptymez.com
  (x,y) = (1,4)
 

edu.uptymez.com = edu.uptymez.com

-3 + 3x = 8 – 2y

2y = 11- 3x

Y =edu.uptymez.com edu.uptymez.com

Y=edu.uptymez.com

edu.uptymez.com
then -3 + 3x = 8 – 2y

-3 + 3x = 8 – 2y

-3 + 3x – 8 + 2y = 0

3x – 11 + 2y = 0

3x + 2y – 11 = 0

(ii)  Y – intercept

Let x = 0

3x + 2y – 11 = 0

edu.uptymez.com= edu.uptymez.com

y = edu.uptymez.com

Y – Intercept =0, edu.uptymez.com

 The coordinate of Y-intercept is (0,11/2)

 find the x-intercept

Let y=0

mx + c = y

0 = edu.uptymez.com+ 11

        x =edu.uptymez.com

The coordinate of X-intercept is (22/3,0)

 
 

(iii)   If ax + by = 12 goes through points (1,-2) and (4, 1) find the value a and b-
 
solution
edu.uptymez.com+
edu.uptymez.com
let the two collinear point be (x,y),(4,1) and gradient 1
then from 
edu.uptymez.com
 edu.uptymez.com
x-4 = y-1
x-y=–1+4
x-y=3
if the equation is multiple by 4 both side we have
4(x-y)=4×3
4x-4y=12
compare the equations.
x-y=3 and ax+by=12
ax+by=4(3)
edu.uptymez.com
x-y=3
edu.uptymez.com
then
edu.uptymez.com
a=1
edu.uptymez.com
b=-4
The value of a=1 and b=-4

EXERCISE 10.3

3. Find the equations of lines through points

       a)     (2,1) with gradient 2.

      b)     (0,5) with gradient -2

      c)     (1,-3) with gradient-3
d)    (-2, -4) with gradient edu.uptymez.com 

      e)    (0, 0 ) with gradient  -3
f)    (-3 , -3)  and  y- intercept  edu.uptymez.com 

      g)  ( 6, 2) and y intercept  -2
h)  (-1 , -1 )  and y –  intercept – edu.uptymez.com                                    

     i)   ( 1 , 2 ) and y- intercept  = 2

     j)    (5 , 5) and y intercept 0

 
 

2. Find the equations of the following lines

a.        (i)  y – intercept  – 2 , gradient  1

b.      (ii)  y – intercept 7, gradient edu.uptymez.com


   (iii) y- intercept -16, gradient 4

 
 

d.      (iv)  y -intercept  2, gradient  – 10

e.      (v)  y- intercept 0.4, gradient  -0.7

        
 

(3) Rewrite the following equations in the form y = mx + c, and then determine the gradient and the y- intercept of each.

a)         (i)  7x + 4y = 11

      (ii) 14x + 3y = 12

c)        (iii)  2x = 5 + y

d)        (iv)  4x + 5y = 40
      (v)  8x – (edu.uptymez.com)y = 0

      (vi)  6x = 5 – 2y
      (vii)   edu.uptymez.com+ edu.uptymez.com= 9

   
 

Qn. 4. Find the area of the shaded region in the following figure. If the equation line AB is 5x + 6y-60 =0

           edu.uptymez.com          

SIMULTANEOUS EQUATIONS

Are equations of more than one variable which can be solved at the same time. There are two ways of solving simultaneous equations.

1.      (i)   Elimination method
   (ii)  Substitution method.
   (iii) Graphical Method

The principle of solving equations is that the number of equations should be equal to the number of unknowns

Example of simultaneous equation

(a)  = edu.uptymez.com

(b)  =  edu.uptymez.com

These are examples of simultaneous equations with two unknowns.

 
 

1.      Elimination method

Is the method of omitting one variable and solve the remaining variables.

How to eliminate

i.  Check if there are equal coefficients

ii.  If there are equal coefficients of same variables in the both equations subtract.

iii.   If there are equal and opposite to coefficients of same variable in both equations, add.

2.      If all coefficients are different modify the equations

Example 1.   2x + 3y = 6

                    3x + 2y = 4

Modification

Omitting:  x  

  edu.uptymez.com

here we can now omit x by subtracting.
edu.uptymez.com

   13y=10
   

       edu.uptymez.com

Omitting y

edu.uptymez.com

edu.uptymez.com 

13x=24              

=edu.uptymez.com

x=edu.uptymez.com

Let find the value of y by take one equation

2x+ 3y=6
edu.uptymez.com

Example 2:

 edu.uptymez.com


Solution

   edu.uptymez.com
                3x=6

             edu.uptymez.com

                 x =2

Let find the value of y by take one equation
6x+y=15

6 edu.uptymez.com 2 + y = 15

12 + y = 15

y = 15 – 12

y = 3

x =2 and y = 3

 
 

Example 03:

2x + y = 10

3x – 2y = 1

Solution. by Eliminate

edu.uptymez.com edu.uptymez.com

edu.uptymez.com

          7x= 21

      edu.uptymez.com                             

       x=3

Let find the value of y by taken one equation

3x-2y=1       

3edu.uptymez.com

9-2y=1

-2y=1-9

= edu.uptymez.com

y= 4

y=4 and x = 3

 
 

Solve the following simultaneous equations by elimination method

1.      x  +  y  =  7

  5x +   12y = 7

Solution

Modify

edu.uptymez.com edu.uptymez.com

edu.uptymez.com edu.uptymez.com    
   
             -7y = -28
                edu.uptymez.com
                 y= 4

Let find the value of x by taken one equation

x + y=7

x + 4 =7

x=7- 4
x=3

Therefore:  x=3 and y = 4

2.         x  +  8y  =19

           2x + 11y = 28


       Solution

=edu.uptymez.com edu.uptymez.com

          = edu.uptymez.com 
                      
                  5y=10         

            = edu.uptymez.com

                y= 2

       Let find the value of x by take one equation

        x + 8y = 19

        x + 8 edu.uptymez.com

       x=19-16    
          x = 3

Therefore:   x=3 and y = 2

3.     8x  +  5y  =  9

 3x + 2y = 4
    

             Solution

edu.uptymez.com

edu.uptymez.com

      =   edu.uptymez.com          

            y=5      

Let find the value of x by taken one equation

8x + 5y = 9

8x + 5(5) =9

8x + 25 = 9

8x = 9 – 25
8x = -16

edu.uptymez.com     
     x = -2

Therefore:   x = -2 and y = 5

 
 

4.     2x- 3y = 7

        15x + y = 9

     Solution

  edu.uptymez.com   
  

edu.uptymez.com

     17x = 34

      edu.uptymez.com  =  edu.uptymez.com 

x = 2

    Let find the value of y by taken one equation

            2y – 3y = 7

            2(2) – 3y =7

               -3y=7-4,  -3y=3

            4 – 3y = 7

            = edu.uptymez.com

                   y=-1
Therefore:    x = 2,  y = -1

5.      2x  +  3y  =  8

         2x  =  2  +  3y

 
 

solution 
    2x + 3y = 8

     2x -3y = 2
            edu.uptymez.com edu.uptymez.com
                       6y=6

                    = edu.uptymez.com

                          y=1

Let find the value of x by taken one equation

2x + 3y = 8

2x + 3(1) = 8
  2x = 8-3
      x=5

=edu.uptymez.com = edu.uptymez.com

x = edu.uptymez.com

Therefore:    x= edu.uptymez.com and y = 1

 
 

 6.       3x  –  4y  = 20

             x +  2y  =  5

Solution

edu.uptymez.com edu.uptymez.com 

 – edu.uptymez.com

  2x = 20

 edu.uptymez.com

x= 10

Let find the value of y by taken the one equation

x + 2y =5

10+ 2y = 5

2y = 5 – 10

= edu.uptymez.com

edu.uptymez.com

Therefore:   y = edu.uptymez.com and x = 10

7.     6x = 7y + 7

         7y – x = 8

 
 

Solution

= – edu.uptymez.com

                 5x= 15

= edu.uptymez.com

      x=3

Let find the value of y by taken one equation

6x – 7y =7

6 (3) -7y = 7
  Therefore :          edu.uptymez.com

 
 

8.       y =  4x  –  7

         16x  –  5y  =  25

    solution

     -4x  +  y  =  -7

         16x  –  5y  =  25

     edu.uptymez.com edu.uptymez.com

        + edu.uptymez.com
               -4x=-10

        edu.uptymez.com

             x = 2.5 or 5/2

Let find the value of y by taken equation one

y – 4x = -7

y = –  4 (2.5)= -7

y = -7 +10

y= 3

Therefore x =  2.5   and  y =  3

9.         2x  +  7y  =  39

           3x  +  5y  =  31

         solution

 edu.uptymez.com

 – edu.uptymez.com

       edu.uptymez.com

            y= 5

 Let find the value of x by taken one equation

3x +5y = 31

3x+ 5(5) = 31

3x=31- 25

= edu.uptymez.com

      x = 2

Therefore:   x = 2 and y = 5

10.             15x  –  8y  =  29

                   17x  +  12y  =  75

Solution

 edu.uptymez.com

 edu.uptymez.com

  edu.uptymez.com

x =3

Let find the value of y by taken one equation

15x – 8y = 29

15(3) – 8y = 29

 edu.uptymez.com

Therefore:   y = 2  and  x =  3

2: SUBSTITUTION

Example: 01 solve

6x + y = 15

3x + y = 9 by substitution method.

solution

6x + y = 15   ……… (i)

3x + y = 9……….. (ii)

from equation 1
6x+y =15
y=15-6x……………..(iii)

Substitute equation (iii) into (ii)

3x + y = 9

3x + 15 – 6x = 9

3x – 6x + 15 = 9

-3x = 9 – 15

-3x=-6

= edu.uptymez.com=  edu.uptymez.com    
   x=2

y = 15 – 6x 

y = 15 – 6 x 2 

y= 15 – 12 = 3

x= 2 and y = 3

 
 

Example 02

2x + y = 10……………..(i)

3x – 2y = 1………………(ii)
From  (i)

2x + y = 10

2x – 2x + y = 10 – 2x

y =   10 – 2x ……………..(iii)

Put (iii)into (ii)

3x – 2 (10 – 2x) = 1

3x – 20 + 4x = 1

3x + 4x – 20 = 1

= edu.uptymez.com= edu.uptymez.com

x = 3

 
 

y = 10 – 2x 

y = 10 – 2 (3)

y = 10 – 6

y = 4

x = 3 and y = 4

 
 

Solve:

3x + 2y = 8………. (i)

2x + 3y = 12…… (ii)

solution
from (i)

3x + 2y = 8
2y=8-3x

edu.uptymez.com= edu.uptymez.com                

Y =  edu.uptymez.com ……. (iii)

          
 

Put (iii) into (ii)

edu.uptymez.com

 3x + 2y = 8

3(0) + 2y = 8
2y=8

edu.uptymez.com= edu.uptymez.com

 Y = 4

X = 0 and y = 4

Exercise 10 .4

1.   Solve the simultaneous equations by using elimination method.

(i).  2x  +  y  =  5

      4x  –  y  =  7

(ii)   3x + y =  6

        5x + y = 8
   

(iii)     5x –  2y  =  16

            x + 2y = 8

(iv)     8x+5y=40
          9x  +  5y  =  5    
       

 (v)     7x – 4y = 17

           5x  –  4y  =  11

 (vi)      0.7x – 0.5y = 2.5

 0.7x  –  0.3y  =  2.9

2.  Solve the following simultaneous equations by using substitution method

(i).     3x  –  2y  = 
         2x + y = 8

(ii)      5x  +  y  =  23

           3x-  2y = 6

(iii)     x  –  3y  =  2

    4x  +  2y  =  36

(iv)       7x  –  y  =  14
             8x  –  2y  =  16

(v)        7x  +  y  =  14

            8x  –  2y  =  16

edu.uptymez.com

 
3.   Solve the  following by using any method
(i)      3y – x =
          y + 2x = 6

(ii)   8m  –  n  =  38

        m  –  3n  =  -1

(iii)  5x – 2y = 10

-x + 3y = 24

 
 

1.     4.Solve  the following simultaneous  equations by substitution method

 (i)    x  –  y = -3

         2x  –  y  =  -5

(ii)      X  –  2y  =  6
           X  +  2y  =  2

3.    (iii)     3x  –  4y  =  -11

              2x  +  3y  =  1

 
 

4.    (iv)   2x  –  3y  =32

             3x  –  4y  =  30

(v)         5a  –  5b  =  7
              2a –  4b =  2

5.  Solve the following system of simultaneous equations by elimination.

6.      (i)      10u  +  3v  –  4  =  0

              6u  +  2v  –  2  =0
       

(ii)       x  –  y  =  1
           4x  +  3y  =  edu.uptymez.com

(iii)    3x + 3y = 15

          2x + 5y =14

(iv)      7x  –  3y  =  15
             5x-  2y  =  19

(v)     x  +  y  =  5
            x –  y  =  1

6.    Solve the following by any method

         edu.uptymez.com

Solving word problems leading to simultaneous equations.

1.      A fathers age is four times the age of his son. If the sum of their ages is 60 years. Find the age of the son and that of the father.

Solution.

Let  x be the age of the son

Let y be the age of father

y = 4x……………….. (i)
x+  y  =  60  …………(ii)

By substitution method

x  + y  =  6, but  y=4x
then
x  +  4x  =  60
5x=60

edu.uptymez.comedu.uptymez.com

x = 12

By solve value of y  you can take one equation

y= 4x
y  =  4  (12)  =  48

 The age  of the father is 48  years and that of the son is 12 years

 
 

2.     2. The sum of two number is 12  and their difference is 2 find the number

Solution

Let the first number be =  x

Let the second number  be=  y

=edu.uptymez.com

2x  +  0  =  14
2x=14

edu.uptymez.comedu.uptymez.com

x  =  7

Let find the value of y

7  +  y  =  12

y =  12  –  7

  y =  5

The numbers are 5 and 7

Example 03. If  the numerator of a fraction is decreased by 1 its value become2/3 but if it denominator  is increased by 5 its value becomes ½ , what the fraction?

 
 

solution 

let the fraction be a/b

edu.uptymez.comedu.uptymez.com…………….(i)

edu.uptymez.com+  5 =  edu.uptymez.com …………..(ii)

from (i)  
edu.uptymez.comedu.uptymez.com

3(a-1) =2b
3a – 3 =2b
3a – 2b=3………………(iii)
from (ii)
edu.uptymez.com
edu.uptymez.com               

Example 4

The sum of the digits of a two digit number is 7. If the digits are reversed, the new number is increased by 3. Equal to 4 times the original number

Find the original number

Let the number be x and y

x + y = 7……………… (i)

The meaning of x, y = 10x + y 

Similarly y, x = 10y + x

y, x + 3 = 4 (x, y)

10y+x+3=4(10x+y)
10y  +  x  +  3  =  40x  +  4y

6y+3=39x

 edu.uptymez.com = edu.uptymez.com

13 x – 2y = 1……. (2)
= edu.uptymez.com edu.uptymez.com
= + edu.uptymez.com
 
      15x + 0 = 15
         15x = 15

edu.uptymez.comedu.uptymez.com

 x = 1

Let find the value of y

  x + y = 7

1+ y = 7 the number was x ,y  is 1,6

y =   6

The original number is 16

Exercise 10.5

1.    The sum of two number is 109 and the difference of the same numbers 29. find the numbers

2.    Two number are such that the first number plus three times the second number is 1. And the first minus three times the second is 1/7. Find the two numbers

3.   The sum of the number of boys and girls in a class is 36. If twice the number of girls exceeds the  number of boys by 12, find the number of girls and that of boys in the class.

      4.   Twice the length of a rectangle exceeds three times the width of the rectangle by one centimeter and if one – third of the difference of the length and the width is one centimeter find the dimensions of     the rectangle.

 5.    The cost of 4 pencils and five pens together is 6000 shillings while the cost of 6 pencils and 8 pens is 940 shillings, calculate the cost of one pencil and one pe

6.     Half of Paul’s money plus one – fifth of John’s money is 1400 shilling John’s money is 2650 shillings. How much has each?

7.     A farmer buys 3 sheep and 4 goats for shs 290,Another buys sheep and goats from the some market for shs 170.What price did they pay for (a) 1 goat (b) 1 sheep

SOLUTIONS.
EXERCISE 10.1

1.   (a)  Their coordinates are

 
 

            A (2, 7)

 
 

            J (0, 4)

 
 

            F (3, 4)

 
 

            N (4, 1.5)

 
 

            M (6, 1)

 
 

            V (2.5, -2)

 
 

            D (6, -2)

 
 

            K (3, -5)

 
 

            C (-3, -5)

 
 

            I (-2, -2)

 
 

            P (-4.5, -2.5)

 
 

            H (-4, 4)

 
 

            G (-2, 6)

 
 

            L (-3, 1)

 
 

            E (0, 0)

 
 

           
 

 
 

     (b)  F belongs to quadrant I

 
 

            H belongs to quadrant II

 
 

            V belongs to quadrant IV

 
 

            I belong to quadrant III

2   (a)  Square

edu.uptymez.com
(b)   Triangle 
edu.uptymez.com

(c)    Trapezium 

edu.uptymez.com

(d)   Parallelogram 

edu.uptymez.com

(e)   Octagon

edu.uptymez.com
EXERCISE 10.2

1.     a)   (0, 3), (2, 5)

edu.uptymez.com

let (x1,y1) be (0,3)
     (x2,y2) be (2,5)

             edu.uptymez.com

         edu.uptymez.com
             M = 1 it is positive gradient.

(b)   (5, 8), (4, 1)

edu.uptymez.com

 
 

 
 

Let (x1, y1) be (5, 8)

      (x2, y2) be (4, 1)

     edu.uptymez.com
          edu.uptymez.com
                        m= 7  Slope is positive

(c)   (1, 5), (4, 7)

edu.uptymez.com

Let (x1, y1) be (1, 5)

(x2, y2) be (4, 7)
edu.uptymez.com
         edu.uptymez.com

      The gradient is positive

(d)    (2,6), (5,3)

edu.uptymez.com

Let (x1, y1) =  (2,6)

(x2, y2) = (5, 3)
edu.uptymez.com


It has a negative  gradient

(e)    (1,6), (3, -1)

edu.uptymez.com

            Let (x1, y1) be (1, 6)

                  (x2, y2) be (3, -1)

                       edu.uptymez.comThe gradient is negative                                                                                                             

                                                                                                           
 

(f)   (3, 6), (-2, -1)

 
 

  edu.uptymez.com       

 
 

            Let (x1, y1) be (3, 6)

 
 

                 (x2, y2) be (-2, -1)

                       m =edu.uptymez.com  

                         =edu.uptymez.com
                            =  edu.uptymez.com 
                 
                                 edu.uptymez.com      The gradient is positive

(g)    (0,2), (6,2)

edu.uptymez.com

            Let (x1, y1) be (0, 2)

                 (x2, y2) be (6, 2)

                          M =edu.uptymez.com   
                                                                                                        
                                  =edu.uptymez.com=edu.uptymez.com
                                  
                                      = 0                 

                       M =0  The gradient is zero


(h)  (2,3), (-1,-3)

edu.uptymez.com

  Let (x1, y1) be (2, 3)

         (x2, y2) be (-1, -3)

             edu.uptymez.com
                     edu.uptymez.com
                        m = 2
                                       The gradient is positive

(i)  (2,10), (2,0)

edu.uptymez.com

            Let (x1, y1) be (2, 10)

            (x2, y2) be (2, 0)

                              Medu.uptymez.com       
                               
                                      =  edu.uptymez.com 
                                        
                                         edu.uptymez.com                                                                                                              
                                                        M is undefined 
                                                      The gradient is undefined 

(j)    (edu.uptymez.comedu.uptymez.com), edu.uptymez.com, 2)
edu.uptymez.com

edu.uptymez.com

                                        The gradient is positive

 (k)    (-2,1), (4,3)

edu.uptymez.com

          let (x1,y1) be (-2,1)
               (x2,y2) be (4,3)
                  edu.uptymez.com
                             edu.uptymez.comThe gradient is positive 
                         

 (i )    (-4,4), (-3,-3)
edu.uptymez.com
  let (x1,y1) be (-4,-4)
               (x2,y2) be (-3,-3)

                   Medu.uptymez.com 

                        edu.uptymez.com
                                      m= -7
                                                    The gradient is negative

 (m)   (0,0), (-3,4)

edu.uptymez.com
   let (x1,y1) be (0,0)
               (x2,y2) be (-3,4)

                    Medu.uptymez.com 

                          edu.uptymez.com
                                       The gradient is negative

(n)     (99,6), (119,1)
edu.uptymez.com
 
  let (x1,y1) be (99,0)
               (x2,y2) be (119,1)
                         Medu.uptymez.com 
                        
                          edu.uptymez.com
                                         The gradient is negative 

(o)      (0.64,-1.62), (1.36,-0.62)
edu.uptymez.com

  let (x1,y1) be (0.64,-1.62)
               (x2,y2) be (1.36,-0.62)

                      Medu.uptymez.com  
              
                              edu.uptymez.com
                                    m=0
                                               The gradient is zero

EXERCISE 10.3

1.  a)     (2,1) with gradient 2.

             (x, y), (2, 1) m= 2
  edu.uptymez.com      
edu.uptymez.com                 

2(2-x) = 1(1-y)

             4-2x = 1-y

            4 -2x =1-y

            y=1-4+2x

            y= -3+2x

           y  =  2x – 3.

b)   (0,5)  with gradient -2

(x, y),  ( 0, 5)  m  =  -2

 
 

      edu.uptymez.com
   edu.uptymez.com

        -2(0 – x) = 1(5-y)

                 0+2x = 5 –y

                      y= 5 -2x

                        y= -2x + 5

c)     (1,-3) with gradient   -3

 (x, y) , (1, -3) m = – 3

edu.uptymez.com

 -3 – y   =  3 – 3x

-y = – 3 + 3x + 3
-y = 3x  edu.uptymez.com       

                y= -3x

 
 

d)    (-2, -4) with gradient   3/2

(x, y)  (-2 , -4)   m  =  3/2
edu.uptymez.comedu.uptymez.com= edu.uptymez.com

 
 

3(-2 – x) = 2(-4 – y)

-6 – 3x  = -8 – 2y

2y  =  6  +  3x – 8

edu.uptymez.com= edu.uptymez.com  + edu.uptymez.com

edu.uptymez.com

 e)     (0, 0 ) with gradient  -3

         (x,y) (0,0) m = -3

 edu.uptymez.com = edu.uptymez.com = edu.uptymez.com

-3(0 – x) = 1(0 – y)

0 +3x = 0 – y

y = 0 – 3x

y = -3x

 
 

f)      (-3 , -3)  and  y- intercept  1/2 

Solution 
(-3, -3)(x, y)    y – intercept =1/2

 Y = mx + c

(-3, -3),(x, y)  

  substitute (-3,-3) to y = mx +c

edu.uptymez.com

 
 

g) ( 6, 2) and y intercept  -2

(6, 2), (0, -2)

edu.uptymez.com
edu.uptymez.com

Gradient = 2/3
Arbitrary
 
(x,y), (6,2)

edu.uptymez.com

3(2-y) = (6-x)
6-3y = 12 – 2x
-3y = 12 – 6-2x
-3y = 6- 2x

edu.uptymez.com

h)   (-1 , -1 )  and y –  intercept – 1/3                                          

                (-1, -1) and (0, -1/3)

            edu.uptymez.com
   
                 edu.uptymez.com
Arbitrary point = (x,y)
 (x,y), (-1,-1)
edu.uptymez.com
edu.uptymez.com

2(-1-x) = 3(-1-y)
-2-2x=-3-3y
3y=-3+2+2x
3y=-1+2x

edu.uptymez.com

i)   (1,2) and y-intercept = 2
 
        (1,2),  (0,2)
 

edu.uptymez.com
0 = 2-y
y = 2

j)  (5,5) and y-intercept 0
 
(5,5) (0,0)

edu.uptymez.com
edu.uptymez.com
y = 5-5 + x
     y=x

(2)   (i)  y – intercept  -2  , gradient  1

 (0, – 2) gradient 1

Arbitrary (x, y)


edu.uptymez.com

y – 0  =  y  +  2

x  = y+2

y = – 2 + x

(ii) y-intercept 7,gradient 3/4

(0,7), (x,y) , gradient 3/4

edu.uptymez.com

iii)  y-intercept -16, gradient 4
 (0,-16), (x,y)   m = 4

edu.uptymez.com

4x-0 = y +16
-y =-4x +16
y = 4x -16
  y = 4x – 16


iv) y-intercept 2, gradient is -10
edu.uptymez.com


3    (i) 7x + 4y = 11
edu.uptymez.com

Alternatively

7x +7y = 11
4y = -7x +11
edu.uptymez.com

ii)    14x + 3y = 12

edu.uptymez.com

iii)    2x=5 +y

  x=0
2x = 5 + y, y=0-5, y =-5
y = 2x -5
 y =2x-5
Gradient = 2
y- intercept = (0,2)

iv)   4x +5y= 40

    x=0
  edu.uptymez.com

5y= -4x + 40
 edu.uptymez.com

edu.uptymez.com

y = 24x
y = 24 (0)
y = 0
y = -8x X -3 = 24x
y = 24x + 0

 Gradient = 24

y-intercept = (0,0)

vi)    6x =5-2y

 x=0
edu.uptymez.com
Gradient = -3

edu.uptymez.com
edu.uptymez.com

4. x-intercept , y=0

5x + 6(0) – 60 = 0
5x – 60 = 0 + 60
edu.uptymez.com
x= 12
 X- intercept = (12,0)

Y- intercept, x=0
5(0) + 6y – 60 = 0
5x – 60 = 60
edu.uptymez.com
y = 10
 y-intercept = (0,10)
 

edu.uptymez.com
edu.uptymez.com
Area = 60 square units

 
EXERCISE 10.4
1.   (i)     2x  +  y  =  5

               4x  –  y  =  7


edu.uptymez.com
    x = 2
2x + y =5
2 (2) + y = 5
4 + y = 5
y = 5-4
 y = 1
 
x =2 and y = 1


(ii).    3x + y = 6
        5x + y =6

edu.uptymez.com
        x = 1
from 3x + y = 6
         3 x 1 + y = 6
          3  +y = 6
          y = 6-3
          y = 3

x = 1 and y = 3
   


 (iii)   5x -2y = 16
           x + 2 = 8

edu.uptymez.com

      x = 4
Let find the value of y by taken equation one
       5x -2y = 16
        5 x 4 – 2xy =16
        20 – 2y = 16
         -2y = 16 – 20
            edu.uptymez.com
               y = 2
x = 4 and y = 2

(iv)   8x + 5y = 40
         9x + 5y = 5
 
edu.uptymez.com       
x+0 = 35
 x = 35
 let find the value of y by taken one equation

 8 x 35 + 5y =40
 280 + 5y = 40
edu.uptymez.com
y = -48
x = 35  and y = -48

(v).   7x -4y = 17
        5x -4y = 11

edu.uptymez.com
Let find the value of y taken one equation 7x – 4y = 17
edu.uptymez.com

 
(vi)    0.7x – 0.5y = 2.5
          0.7x – 03y = 2.9

edu.uptymez.com
0-0.2 = -0.5
0.2y = -10.4
0.2 = -10.4
 y = 2

Let find the value of x by taken one equation 

0.7x – 0.5y = 2.5
0.7x – 0.5(2) = 2.5
 0.7x = 2.5 + 1
edu.uptymez.com

2. (i)      3x -2y = 5
              2x +y = 8

3x – 2y = 5……………(i)
2x + y = 8…………….(ii)
 y=8 – 2x ……………..(iii)

put eqn (iii) into (iv)
 3x -2x (8 -2x) = 5
 3x – 16 + 4x = 5
 3x + 4x -16 =5
7x = 5 + 16
edu.uptymez.com
x=3
y= 8-2 x3
y= 8-6
y = 2
 x =3 and y = 2

(ii)   5x + y =23
        3x – 2y = 6

5x – y = 23…………(i)
3x -2y = 6………….(ii)
5x-y +y = 23 + y.
5x =23 + y
5x – 23 =y…………….(iii)

put eqn (iii) in (ii)

3x -2 (5x – 23) = 6

3x -10x + 46 = 6
-7x+ 46 = 6
7x = 6 – 46

edu.uptymez.com
Let find the value of y by taken one equation
 

edu.uptymez.com

(iii).  x -3y=2

         4x + 2y = 36

x -3y=2 ……………(i)
4x + 2y = 36 …………(ii)
x=2 + 3y ……………..(iii)

put eqn (iii) in (ii)

 4 (2 + 3y) + 2y = 36
8 + 12y +2y = 36
8 + 14y = 36
14y = 36 -8

edu.uptymez.com
y = 2

Let find the value of x by taken one equation

x= 2 +3y
x = 2+3(2)
x = 2 +6
x = 8

y = 2 and x = 8

(iv)  7x – y = 14
       8x – 2y = 16

7x – y =11……………(i)
8x – 2y = 16 …………(ii)
7x – 14 = y ………………(iii)

put eqn  (iii) into eqn (ii)

8x – 2x (7x – 14) = 16
8x – 14 + 28 = 16
-6x + 28 = 16

edu.uptymez.com
x = 2

Let find the value of y by taken one equation

y = 7 x2 = 14
y = 14 -14 = 0
y = 0

 x = 2 and y =o

(v)    7x + y = 14
          8x – 2y =6

7x + y =14…………….(i)
8x – 2y = 6…………… (ii)
y = 14 – 7x ……………(iii)

put eqn (iii) in (ii)

8x – 2(14 – 7x) =6
8x – 28 + 14x =6
22x – 28 = 6

edu.uptymez.com
edu.uptymez.com

                   x = -90

Let find the value of y by taken one equation

 edu.uptymez.com

x = -90 and y = 27

3. (i)   3y – x = 4
           y + 2x = 6
 

edu.uptymez.com
    x = 2
  Let find the value of y by taken one equation

y +2x = 6
y + 2 x2 = 6
y +4 =6
y = 6-4
y =2

x =2 and y = 2

(ii)   8m- n = 38
           m – 3n = -1

edu.uptymez.com
n = 2

Let find the value of m by taken one equation
 m -3 = -1
m-3 X 2 = -1
m-6 = -1
m = -1 + 6
m = 6-1
m = 5
 
n = 2 and m = 5

(iii)  5x – 2y = 10
       -x + 3y = 24

 edu.uptymez.com
Let find the value of y by taken one equation

                 5 x 6 – 2y = 10     

                   30 – 2y = 10
                   
                    -2y = 10 -30
                   
                    edu.uptymez.com
                       y = 10

                     x = 6 and y = 10

 4.  (i)        x -y = -3
                  2x – y = -5

               x-y = -3 ………………..(i)
              2x – y = -5 …………….(ii)
              x=-3 + y ……………….(iii)

put eqn (iii) into eqn (ii)
 2(-3 + y) – y= -5
 -6 + 2y – y = -5
   y – 6 = -5
   y = -5 + 6
   y = 1
   
   x = -3 + y
      = -3 +1
   x = -2

x= -2 and y = 1

(ii).      x -2y = 6
            x + 2y = 2

x – 2y = 6 ………………..(i)
x + 2y = 2 ……………….(ii)
x =6 + 2y ………………..(iii)

put eqn 3 into eqn 2
 
6 + 2y +2y = 2
6 + 4y = 2
4y = 2 -6

edu.uptymez.com
 y = -1

x = 6 + 2x -1
x = 6 + -2
x= 4

x = 4 and y = -1

(iii)   3x – 4y = -11
         2x + 3y = 16

edu.uptymez.com

6x -4y = -11 ………………(i)
6x + 3y = 16………………(ii)
6x = -11 + 4y …………….(iii)   

put eqn (iii) into (ii)
-11 + 4y + 3y = 16
-11 + 7y = 16
7y = 16 +11

edu.uptymez.com

(iv)     2x – 3y = 32
           3x – 4y = 30

edu.uptymez.com

6x – 9y =96…………..(i)
6x – 8y = 60…………..(ii)
6x = 96 + 9y ………….(iii)

put eqn (iii) into eqn (ii)

96 + 9y -8y =60
96 + y =60
y = 60 – 96
 y= -36

6x = 96 +9x -36
6x = 96 – 324
edu.uptymez.com
x = -38 and y = -36

(v)          5a -5b = 7
               2a  – 4b = 2

edu.uptymez.com

10a-5b =7 ………….(i)
10a -4b = 2 ………….(ii)
10a = 7 + 5b ………….(iii)

put eqn (iii) into eqn (ii)i

7 +5b -4b= 2
7 + b =2
b =2-7
b = -5
10a = 7+5x -5
10a = 7 + -25
10a =7 – 25
edu.uptymez.com

5. (i)   10u + 3v – 4 = 0
            6u   + 2v – 2 = 0

10u + 3v = 4
6u + 2v = 2

edu.uptymez.com
let find the value of u by taken equation
       10u + 3v =4
       10u + 3 (-2) = 4
        10u -6 = 4
        10u = 4 +6
         10u = 10

        edu.uptymez.com
  v = -2 and u = 1

(ii)     x   –   y = 1
        edu.uptymez.com

edu.uptymez.com
let find the value of x by taken one equation

edu.uptymez.com

(iii)    3x + 3y =15
            2x + 5y = 14

edu.uptymez.com

Let find the value of x by taken  one equation
 
              3x + 3y =15
             edu.uptymez.com

          edu.uptymez.com

(iv)        7x -3y = 15
              5x – 2y = 19

edu.uptymez.com
  y = 58
 Let find the value of x taken one equation
     7x -3y =15
     7x – 3 x 68 = 15
     7x – 204  =15
 
  edu.uptymez.com

(v).    x + y =5
          x – y =1
 
        edu.uptymez.com
                 edu.uptymez.com
                    y = 2
 
Let find the value of x by taken one equation

       x + y = 5
       x + 2 = 5
       x= 5-2
        x = 3
 x = 3 and y = 2

edu.uptymez.com

edu.uptymez.com  

2x + 4y = 48………………… (ii)

Now you can take equation (i) and (ii) to solve the equation

    3x-4y =12
    2x+ 4y = 48

edu.uptymez.com

               x = -9

Let find the value of y by taken one equation

3x – 4y =3

3(-9) -4y = 3

-27 – 4y = 3

-4y = 3 + 27

edu.uptymez.com
y = -7.3 and x = – 9

EXERCISE  10.5
 
1.   Let the numbers be x and y

        edu.uptymez.com
             2y = 80
                edu.uptymez.com
                   y = 40
       let find the value of x
           x + y = 109
            x + 40 = 109
             x = 109 – 40
              x = 69
The two numbers are 69 and 40
     

2. let the first number be x
    let the second number be y

      x + 3y = 1 ……………(i)
       edu.uptymez.com

Let find the value of y

x+3y =1

edu.uptymez.com

3. Let the girls number be x and the boys be y

edu.uptymez.com
      x = 16
   let find the value of x

x + y = 36
16 + y = 36
y = 20

The girls are 16 and boys are 20

4.  let the length be x and the width be y
    

edu.uptymez.com
Let find the value of y

2x -3y = 1
2 x 2 -3y = 1
4 – 3y = 1
edu.uptymez.com
y = 1
The length =2cm  and width = 1cm

5.  Let the pencils be x and pen be y

edu.uptymez.com
             x = 50

Let the value of x

4x + 5y = 600
4  x 50 + 5y = 600
200 +5y = 600
5y =600 -200
edu.uptymez.com
y = 80

The pencils are 50 and pens are 80

6.  let paul,s money be x

     let john’s money be y

edu.uptymez.com
               y = 1500

Let find the value of x
edu.uptymez.com

          x = 2200
Paul’s money = 2200 shs  and  John’s money = 1500 shs 

7. let the price of the sheep be a
    Let the price of goat be  = b

edu.uptymez.com
               2a = 100
                  edu.uptymez.com
                    a = 50
let find the value of b

3a + 4b = 290
3 x 50 + 4b = 290
150 + 4b = 290
4b = 290 – 150

edu.uptymez.com
    b = 35

 The price of sheep = a
  The price of goat = b
  They bought 1 goat at 35 shs and 1 sheep at 50shs

edu.uptymez.com

Share this post on: