MATHEMATICS FORM 4 – COORDINATE GEOMETRY

Share this post on:

 edu.uptymez.com

edu.uptymez.com
Exercise

1.      Plot the following point. P (2,2), T (-1, -2), L (2, -1)

edu.uptymez.com

2.      In which quadrants is the?

a.      Abscissa positive?          I

b.      Ordinate negative          III

c.       Abscissa negative          II

d.      Ordinate positive            I

e.      Abscissa negative and ordinate negative?  III

 
 

EQUATIONS IN A STRAIGHT LINE

Gradient / slope

 edu.uptymez.com

Equation

A (3,2) N (x,y) m=1

Gradient = edu.uptymez.com

           1 = edu.uptymez.com

      y – 2 = x – 3

           y =x – 3 + 2

            y=x – 1

Consider two points P (x, y) and (X2, Y2) are given and lie on the same line.

If there exists point N (x, y) which lies on PQ, where X1 ≠ X2 the N lies on the same line If and Only if the slope of PN if the same as the slope of PQ. 


edu.uptymez.com

Slope PQ =  edu.uptymez.com

                   
 

P(x ,y) and Q ( X2, Y2)

Slope of PQ (M) = edu.uptymez.com                             

Slope at PN = edu.uptymez.com

 
 

P(X ,Y) and N ( X, Y)  

M =  edu.uptymez.com

 
 

Exercise

1.   A straight line is drawn through (2, 4) and (-2, 2) . Draw a graph to find where it intersects.

a.      The y- axis

b.      The x-axis

Solution:

edu.uptymez.com

 (a) (0 , 3)

   (b) (-6, 0)

edu.uptymez.com

Equation of line

Choose the points (2, 4)
edu.uptymez.com

Will intersect in point (-6, 3)

 
 

 
 

2.     In figure below, find the coordinates of the following points; A,P and L

    edu.uptymez.com 

                  A (3, 1), P (0,0) , L(-2,-2)

3.     Find the gradient of the straight line joining each of the following pairs of points.

a.      (1,6) and (5,7)

b.      (3,2) and (7,-3)

c.       (-3,4 ) and (8,1)

 
 

 

Solution:
edu.uptymez.com

 
 

4.      Find the equation of the line of 2 which passes through the point (3,5)


Solution;

M = 2

M =  edu.uptymez.com
        

2= edu.uptymez.com

     
 

2X – 6 = Y – 5

2X – 6 + 5 = Y

Y=2X – 1

 
 

5.      For each of the following conditions, find the equations of the line.

a.      Passing through points (4,7) having gradient of 3.

b.      Passing through point (4,7) and (3,4)

c.       Passing through A (4,-3) whose slope is 2/5 of the slope of the line joining A (4,-3) to B (9,7)

 
 

Solution

a).      3 = Y-7

      X-4


3X-12= Y-7


Y=3X-5

 
 

b).      M= 7-4

      4-3

M=3

3= edu.uptymez.com

    
 

3X – 9 =  Y – 4


Y =3X – 5

c).       M= edu.uptymez.com =  2

     
 

edu.uptymez.com x 2= edu.uptymez.com

 
 

edu.uptymez.com =  edu.uptymez.com

        
 

4X – 16 – 15 =  5Y

Y= edu.uptymez.com

        
 

 
 

6.      Verify that the points (-2,2) and ( -6,0) lie on the line joining points  A (-4,1) and B (2,4).

Solution

M = edu.uptymez.com =  edu.uptymez.com

         
 

M= edu.uptymez.com 
    

Also

M = edu.uptymez.com                   

         M= edu.uptymez.com
edu.uptymez.com

 
 

  
 

 
 

7.      Find the equations of the following straight lines in the form of ax + by + c = 0

a.      The line joining the points ( 2,4) and (-3,1)

M= edu.uptymez.com= edu.uptymez.com

       
 

edu.uptymez.com = edu.uptymez.com

         
 

5y – 20 = 3x-6

5y = 3x + 14

3x – 5y + 14 = 0

 
 

b.      The line through (3,1) with gradient edu.uptymez.com

Solution:

M= edu.uptymez.com

               M =  edu.uptymez.com

               edu.uptymez.com = edu.uptymez.com

 
 

               -3x + 9 -5y + 5 = 0

               -3x – 5y + 14 = 0

 
 

(c) = The line through (3,-4) and which has the same slope as the line 5x-2y =3

 
 

     5x-2y = 3

                      5x – 3 = +2y

edu.uptymez.com

edu.uptymez.com

        2y + 8 = 5x + -15- 8

 
 

       2y +8 -8 = 5x-15-8

 
 

      2y = 5x-23

 
 

      0= 5x-2y-23

 
 

      . : 5x – 2y -23 = 0

 
 

8.      Determine the value of K in order the line whose equation is Kx – y + 5 passes through that point (3,5)

Solution:

                     Kx – y+5=0

                     Kx-5+5=0

                     3K=0

                     K=0

9.      What must be the value of T to allow the line represented by the equation 3X-Ty=16 to pass through the point (5,-4)

Solution

                     3x-Ty=16

                     3(5) – Tx-4=16

                     15 + 4T=16

                     4T = 1

                     T = edu.uptymez.com

10.  Find the equation of a line with a slope edu.uptymez.com having the same Y-intercept as the line

 2x – 5y + 20 = 0

 
 

Solution:

                     y = mx +c

                     5y= edu.uptymez.com + 20

                     y= edu.uptymez.com + 4

                     y – intercept x = 0

                     y = 4

                     points (0 , 4)

                     y = m(x – x1) + y1

                     y = edu.uptymez.com (x – 0) + 4

                     y = edu.uptymez.com + 4

11.  Determine the value of m and c so that the line Y = mx + c will pass through the points (-1, 4) and (3, 5).

 
 

Solution:

M = edu.uptymez.com=  edu.uptymez.com

M = edu.uptymez.com

      
 

edu.uptymez.com = edu.uptymez.com

     
 

x – 3 = 4y – 20

x + 17= 4y

y = edu.uptymez.com + edu.uptymez.com

c = edu.uptymez.com 

Therefore gradient (M) = edu.uptymez.com  and c =edu.uptymez.com 

 
 


EQUATION OF A STRAIGHT LINE.

Slope of PQ (M) = edu.uptymez.com

                                               
 

Y-Y1 = M(X-X1)

Y= MX  –  MX1+ Y1

Y = MX + C

  
 

Example

(3, 5) slope = 2

Y – 5 = 2(X-3)

Y= 2x – 6 + 5

 
 

Mid point of a straight line  

 
 

edu.uptymez.com

 
 

Similarities;

 edu.uptymez.com          

edu.uptymez.com= edu.uptymez.com = edu.uptymez.com 

edu.uptymez.com = 1

Take;


PC
= PQ

QD    QR

edu.uptymez.com = 1

 
 

 
 

X-X1 = X2– X

2X= X1 + X2

X = edu.uptymez.com

           
 

edu.uptymez.com = edu.uptymez.com

  QR

edu.uptymez.com = 1

 
 

2Y = Y2 + Y1

Y= edu.uptymez.com

         
 

Mid point (x, y) =  edu.uptymez.com

                                                                      
 

 
 

EXERCISE

1.      Find the coordinates of the mid points joining each of the following pairs.

a.      (7,1) and (3,5)

     Midpoint =    edu.uptymez.com

                 =     edu.uptymez.com

                
                 = (5, 3)

 
 

b.      ( 0,0 ) and (12, 3)

Mid point = edu.uptymez.com

              
             = (6, 1.5)

 
 

DISTANCE BETWEEN TWO POINTS

 
 

PQ2= PC 2 + BC2

PQ2 = (X-X1)2 + (Y- Y1)2

edu.uptymez.com = edu.uptymez.com

 
 

EXERCISE

1.      If the line from (-4, Y1) to (X2, -3) is bisected at (1,-1) . find the values of Y1 and X2


Solution

1= (-4 + X2)/2

           2


2 = -4 + X2

X2 = 6

-1 = Y -3

        2

 -2 = Y1 + -3

Y1  = 1

 
 

2.      The mid point of a line segment is ( -2,5) and one end point is (1,7) . Find the other end point.

 
 

Solution:

                  Mid point =  edu.uptymez.com

                             =  edu.uptymez.com 

                 
                          -2 = edu.uptymez.com

                 
                          -4 = 1 + X2

                 
                           X2 = -5

 
 

                           5 = edu.uptymez.com

                 
                        10 = 7 + Y2

                         Y2 = 3

                   
The other points is (-5 , 3)

 
 

3.      The mid points of the sides of a triangle are ( 2 , 0) and  (4, -3 ½ ) and

 (6 , ½) .Find the vertices of the triangle if one of them is (4,3) .

 
 

Solution

i.  Mid point = (2,0)

 2 = 4 + X2

           2

4 = 4+ X2

X2 = 0

0 = 3+ Y2

         2

Y2 = -3

 
 

ii.4 = 4+ X2

2

X2= 8-4

X2= 4

 
 

-3.5 = 3 + Y2

               2

Y2 = -7-3

Y2 = -10.

  
 

 
 

iii.             6 = 4+ X2

         2

12 = 4 + x2

X2 =  8

 
 

0.5 = 3 + Y2

             2

1= 3 + y2

Y2 =2

 
 

:. The vertices of the triangle are (0 , -3), (4 , 10) and (8 , -2)

 
 

4.      Three vertices of a parallelogram ABCD are A (-1,3) ,B(2,7) and C (5,-7). Find the coordinates of vertex D using the principle that the diagonals dissect each other.

                                
 

                                 Solution:

 
 

 
 

 edu.uptymez.com

   Mid point H (x, y) =   (5-1 )  , (-7+3)

                2           2

                               
 

       = (2,-2)

 
(2,-2) =  2+ X, 7+Y

                2     2

 
 

4 = 2+ X

X = 2

 
 

-4 = 7 + Y

Y= -11

D= ( 2,-11)

 
 

 
 

EXERCISE

1.Find the distance between the line segments joining each of the following pairs of points.

a.   (1,3) and (4,7)

 
 

Solution

D = edu.uptymez.com

D = edu.uptymez.com

D = edu.uptymez.com

D = edu.uptymez.com

D= edu.uptymez.com

D = 5

 
 

b.   (1,2) and (5,2)

 
 

Solution;

D = edu.uptymez.com

D = edu.uptymez.com

D = edu.uptymez.com

D = edu.uptymez.com

D = 4

 
 

2.Find the distance of the following point from the origin.

(-15, 8) (0, 0)

 
 

     Solution

 
 

D = edu.uptymez.com

D = edu.uptymez.com

D = edu.uptymez.com

D = edu.uptymez.com

D= edu.uptymez.com

D = 17 

 
 

3. P, Q, R are the points (5,-3) (-6,1) (1,8) respectively . Show that triangle PQR is isosceles

 
 

 
 

edu.uptymez.com

QP    = edu.uptymez.com

QP = edu.uptymez.com

QP = edu.uptymez.com

QP = edu.uptymez.com

QP= edu.uptymez.com

 
 

PR = edu.uptymez.com

PR = edu.uptymez.com

PR = edu.uptymez.com

PR = edu.uptymez.com

PR= edu.uptymez.com

 
 

Therefore triangle PQR is isosceles

 
 

PARALLEL LINES

 
 

Two lines are parallel if they have the same slope.

 Example

1.      Find whether AB is parallel to PQ in the following case.

a.       A( 4,3) , B (8,4) P ( 7,1) Q ( 6,5)

 
 

Solution

Slope of AB =     Change in Y

                         Change in X

                    =  edu.uptymez.com = edu.uptymez.com

                               
 

                Slope of PQ=  edu.uptymez.com = -4

      Therefore AB and PQ are not parallel line

                        
 

2.      Find the equation of the line through the point ( 6,2) and parallel to the line

 X +3Y –  13=0

 
 

Solution

                         X+3Y -13 =0

                         3Y = -X+13

                         Y= -X/3 + 13/3

                         Slope = -1/3

                         Equation of a straight line

                        
                         Y – Y1= M (X-X1)

                         Y – 2 = -1/3 (x-6)

                         Y = -x/3 + 4 

 
 

3.      Show that A (-3, 1), B (1,2) , C( 0,-1) and D ( -4,-2) are vertices of a parallelograms.

 
 

edu.uptymez.com

Slope AB = edu.uptymez.com= edu.uptymez.com 

 
 

 
 

         Slope CD = edu.uptymez.com = edu.uptymez.com

                              
 

 
 

PERPENDICULAR LINES

 
 

Two lines are perpendicular if they intersect at right angle. Suppose that two lines L1 and L2 are perpendicular with slopes M1 and M2 as shown below.
edu.uptymez.com

 
 

 
 

Choose Point P(x1,y1) , P2(x2, y2) P3(x3, y3), R and Q

 
 

Also , β and edu.uptymez.com are the Greek letters Alpha, beta and gamma respectively representing the degree measures of the triangles as indicated. Then

 
 

               edu.uptymez.com         

If two non-vectorlines are perpendicular with slopes M1 and M2,then 

edu.uptymez.com 


Two lines are perpendicular if they intersect at right angles.

If two non vertical lines are perpendicular with slopes M1 and M 2, then

M1   x  M 2 = 1

 
 

Example

1.      Find the equation of the line through P (-2 , 5) and perpendicular to the line

 6X – 7Y = 4

 
 

Solution

 y = mx + c

From the equation we get

Y = (edu.uptymez.com )X – edu.uptymez.com

M1 = edu.uptymez.com

 M1 x M2 = -1

      (edu.uptymez.com) M2= -1

               M2= –edu.uptymez.com

 
 

                     Equation M = –edu.uptymez.com (-2, 5)

                          
edu.uptymez.com

 
 

2.      Find the equation of the line through the point (6,2) and perpendicular to the line joining P ( 3,-1) and Q ( -2 ,1)

 
 

Solution:

 Slope of P and Q = 1- -1 = –edu.uptymez.com

                             -2-3

M1 x M 2 = -1

M2= -1 x -5/2 = 5/2

 
 

              Equation M = 5/2 (6,2)

 

edu.uptymez.com

 
 

3.      Find the equation of  a line perpendicular to the  equation 3X- 11Y -4 = 0

And passing through (- 3, 8)

 
 

Solution:

 
 

3X – 11Y – 4 =0

Y =mx + c

 -11y = -3X +4

Y= 3/11 X – 4/11

M = 3/11

M2 = – 11/3

Equation M = –edu.uptymez.com ( -3,8)

 

edu.uptymez.com

 
 

4.      Show that A (-3 , 2) , B ( 5 , 6) and C (7 , 2) are vertices of a right angled triangle.

Solution

 

edu.uptymez.com


Slope of AB x slop of BC = -1

Hence AB is perpendicular to BC

 
 

 
 

5.      Determine which two sides of the following triangles ABC contain a right angle. A(3,2) , B ( 5,-4) , C ( 1, -2)

 
 

Solution

 Slope AB = -4 – 2 =   -6  = -3

                   5-3         2  


Slope BC = -2 + 4 = 2 = – 1 1  

                  1-5     -4       2     2


Slope AC = –2-2   = –4 = 2

                  1-3      -2 


Slope of AB x slope of AC = -1

-(1/2) x 2 = -1

 
 

Therefore AB is perpendicular to AC

 
 

edu.uptymez.com

Share this post on: