ADVANCED MATHEMATICS FORM 6 – COORDINATE GEOMETRY II

Share this post on:

GENERAL EQUATION OF THE PARABOLA

·         Consider the parabola whose focus is s (u, v) and directrix ax + by + c = 0

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

          Is the general equation of the parabola

Where;

     S (u, v) – is the focus

          Examples:

1.  Find the focus and directrix of the parabola y2 = 8x

Solution

Given y2 = 8x

  Comparing from

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

2.  Find the focus and the directrix of the parabola

y2 = -2x

Solution

edu.uptymez.com

Compare with

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

3.  Find the focus and directrix of x2 = 4y

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

4. Given the parabola x2 = edu.uptymez.com

a) Find i) focus

ii) Directrix

iii) Vertex

b) Sketch the curve

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

i) Focus = edu.uptymez.comedu.uptymez.com

ii) Directrix, y = a

edu.uptymez.com

iii) Vertex edu.uptymez.com

b) Curve sketching

          edu.uptymez.com

5.  Find the equation of the parabola whose focus is (3, 0) and directrix

X = -3

        Solution

          Given focus (3, 0)

          Directrix, x = -3

          (3, 0) = (a, 0)

          From

edu.uptymez.com
y2 = 4 (3)x

edu.uptymez.com

6.   Find the equation of the parabola whose directrix, y = edu.uptymez.com

Solution

Given directrix, y = edu.uptymez.com

Comparing with

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

7.  Find the equation of the parabola whose focus is (2, 0) and directrix, y = – 2.

Solution

Focus = (2, 0)

Directrix y = -2

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

8.   Find the equation of the parabola whose focus is (-1, 1) and directrix x = y

Solution

Given: focus = (-1, 1)

Directrix x = y

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

PARAMETRIC EQUATION OF THE PARABOLA
The parametric equation of the parabola  are given

X = at2 and y = 2at

          Where;

          t – is  a parameter

 TANGENT TO THE PARABOLA

Tangent to the parabola, is the straight line which touches it at only one point.

edu.uptymez.com

Where, p – is the point of tangent or contact

CONDITIONS FOR TANGENT TO THE PARABOLA

a) Consider a line y = mx + c is the tangent to the parabola y2 = 4ax2. Hence the condition for tangency is obtained is as follows;

i.e.

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

b) Consider the line ax + by + c = is a tangent to the parabola y2 = 4ax Hence, the condition for tangency is obtained as follows;

i.e.

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.comedu.uptymez.com

Examples

1.  Prove that the parametric equation of the parabola are given by

X = at2, and y = 2at

Solution

Consider the line

Y = mx + c is a tangent to the parabola y2 = 4ax. Hence the condition for tangency is given by y2 = 4ax

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

The parametric equation of the parabola of m is given as x = at2 and y = 2at

Where;

t – is a parameter

GRADIENT OF TANGENT OF THE PARABOLA

The gradient of tangent to the parabola can be expressed into;

i) Cartesian form

ii) Parametric form

i) IN CARTESIAN FORM

– Consider the tangent to the parabola y2 = 4ax Hence, from the theory.

Gradient of the curve at any = gradient of tangent to the curve at the point

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ii) IN PARAMETRIC FORM

Consider the parametric equations of the parabola

 i.e.

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EQUATION OF TANGENTS TO THE PARABOLA

These can be expressed into;

i) Cartesian form

ii) Parametric form

i) In Cartesian form

– Consider the tangent to the parabola y2 = 4ax at the point p (x, y)

edu.uptymez.com

Hence the equation of tangent is given by

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ii) In parametric form

·         Consider the tangent to the parabola y2 = 4ax at the point p (at2, 2at)

edu.uptymez.com

Hence the equation of tangent is given by;

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Examples

1. Show that the equation of tangent to the parabola y2 = 4ax at the point    edu.uptymez.com

2. Find the equation of tangent to the parabola y2 = 4ax at (at2, 2at)

NORMAL TO THE PARABOLA

Normal to the parabola is the line which is perpendicular at the point of tangency.

edu.uptymez.com

Where;

P is the point of tangency

GRADIENT OF THE NORMAL TO THE PARABOLA

This can be expressed into;·

i) Cartesian form

ii) Parametric form

i) In Cartesian form

– Consider the gradient of tangency in Cartesian form

i.e. edu.uptymez.com

Let M = be gradient of the normal in Cartesian form but normal is perpendicular to tangent.

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ii) In Parametric form

 Consider the gradient of tangent in parametric form.

edu.uptymez.com

Let m be gradient of the normal in parametric form.

But

Normal is perpendicular to the tangent

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EQUATION OF THE NORMAL TO THE PARABOLA

These  can  be expressed into;·
i) Cartesian form

ii) Parametric form

i) In Cartesian form

Consider the normal to the point y2= 4ax at the point p (x1, y1) hence the equation of the normal given by;

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ii) In parametric form

Consider the normal to the parabola y2 = 4ax at the point p (at2, 2at). Hence the equation of the normal is given by;

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

Examples:

1.  Find the equation of the normal to the parabola y2 = edu.uptymez.com at the point edu.uptymez.com

2. Show that the equation of the normal to the parabola y2 = 4ax at the point (at3, 2at) is edu.uptymez.com

CHORD TO THE PARABOLA

·         This is the line joining two points on the parabola

edu.uptymez.com

Let m – be gradient of the chord
Hence
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
ii) GRADIENT OF THE CHORD IN PARAMETRIC FORM
Consider a chord to the parabola edu.uptymez.com at the points edu.uptymez.com and edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Share this post on: