ADVANCED MATHEMATICS FORM 6 – COORDINATE GEOMETRY II

Share this post on:

EQUATION OF THE CHORD TO THE PARABOLA.

These can be expressed into;·
i) Cartesian form
ii) Parametric form

i) EQUATION OF THE CHORD IN PARAMETRIC FORM

– Consider the chord to the parabola y2 = 4ax at the pointsedu.uptymez.com. Hence the equation of the chord is given by;

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

II. EQUATION OF THE CHORD IN CARTESIAN FORM.

Consider the chord to the parabola y2 = 4ax at the point P1(x1, y1) and P2 (x2, y2) hence the equation of the chord is given by
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EXCERSICE.

1.  Show that equation of the chord to the parabola y2 = 4ax at (x1, y1) and (x2, y2) is edu.uptymez.com

2.  Find the equation of the chord joining the points (edu.uptymez.com) and edu.uptymez.com

3.  As edu.uptymez.com, the chord approaches the tangent at t1.deduce the equation of the tangent from the equation of the chord to the parabola y2 = 4ax.

THE LENGTH OF LATUS RECTUM

Consider the parabola edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

          Now consider another diagram below

edu.uptymez.com

Therefore, the length of latus rectum is given by

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EQUATION OF LATUS RECTUM
– The extremities of latus rectum are the points p1 (a, 2a) and

p2 (a1, -2a) as shown below

edu.uptymez.com

Therefore, the equation of latus rectum is given by
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
OPTICAL PROPERTY OF THE PARABOLA
Any ray parallel to the axis of the parabola is reflected through the focus. This property which is of considerable practical use in optics can be proved by showing that the normal line at the point ”p” on the parabola bisects the angle between edu.uptymez.com and the line edu.uptymez.com which is parallel to the axis of the parabola.
Angle of INCIDENCE and angle of REFLECTION are equal

edu.uptymez.com

edu.uptymez.com– is the normal line at the point ‘p’ on the parabola
i.e.
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com            Note that;  (QPS) Is an angle.
edu.uptymez.com
edu.uptymez.com
Examples

Prove that rays of height parallel to the axis of the parabolic mirror are reflected through the focus.

TRANSLATED PARABOLA

1.  edu.uptymez.com

– consider the parabola below

edu.uptymez.com

PROPERTIES.

I) The parabola is symmetrical about the line y = d through the focus
II) Focus, edu.uptymez.com
III) Vertex, edu.uptymez.com
IV) Directrix, edu.uptymez.com

2.   edu.uptymez.com

– Consider the parabola below

edu.uptymez.com

PROPERTIES

I) the parabola is symmetrical about the line x = c, through the focus
II) Focus edu.uptymez.com
III) Vertex, edu.uptymez.com
IV) Directrix, edu.uptymez.com

Examples

1. Show that the equation edu.uptymez.com represent the parabola and hence     find

i) Focus

ii) Vertex

iii) Directrix

iv) Length of latus rectum

Solution

Given;

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

2. Shown that the equation x2 + 4x + 2 = y represents the parabola hence find its focus.

Solution

Given;

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

3.  Show that the equation x2 + 4x – 8y – 4 = 0 represents the parabola whose focus is at (-2, 1)

          Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ELLIPSE

This is the conic section whose eccentricity e is less than one

I.e. |e| < 1

          edu.uptymez.com

edu.uptymez.comedu.uptymez.comedu.uptymez.com

AXES OF AN ELLIPSE

An ellipse has two axes these are
i) Major axis
ii) Minor axis

1.  MAJOR AXIS

Is the one whose length is large

2.   MINOR AXIS

Is the one whose length is small

a)

edu.uptymez.com

b)

edu.uptymez.com

Where

AB – Major axis

PQ – Minor axis

EQUATION OF AN ELLIPSE
These are;
i) Standard equation

ii) General equation

1.   STANDARD EQUATION

– Consider an ellipse below;

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

1st CASE
Consider an ellipse along x – axis

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

PROPERTIES

I) an ellipse lies along the x – axis (major axis)

ii) a > b

iii) edu.uptymez.com

iv) Foci, edu.uptymez.com

v)  Directrix edu.uptymez.com

vi) Vertices, (a, o), (-a, o) along major axis

(0, b) (0, -b) along minor axis

vi) The length of the major axis l major = 2a

viii) Length of minor axis l minor = 2b

Note:

For an ellipse (a – b) the length along x – axis

B – is the length along y – axis

2nd CASE

·         Consider an ellipse along y – axis

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com        

Share this post on: