ADVANCED MATHEMATICS FORM 6 – COORDINATE GEOMETRY II

Share this post on:

PROPERTIES

i) An ellipse lies along y – axis (major axis)

ii) b > a

iii) edu.uptymez.com

iv) Foci edu.uptymez.com

v) Directrices  edu.uptymez.com

vi) Vertices: edu.uptymez.com = along major

edu.uptymez.com = along minor as

vii) Length of the major axis L major = 2b

viii) Length of the minor axis   L minor = 2a

II. GENERAL EQUATION OF AN ELLIPSE

·         Consider an ellipse below y – axis

edu.uptymez.com

From
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
EXAMPLE
Given the equation of an ellipse edu.uptymez.com
Find i) eccentricity
ii) Focus
iii) Directrices

Solution

Given edu.uptymez.com

Compare from

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Find the focus and directrix of an ellipse 9x2 + 4y2 = 36

Solution

Given;

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

CENTRE OF AN ELLIPSE
This is the point of intersection between major and minor axes

edu.uptymez.com

·         O – Is the centre of an ellipse

edu.uptymez.com

A – Is the centre of an ellipse

DIAMETER OF AN ELLIPSE.

This is any chord passing through the centre of an ellipse

edu.uptymez.com

Hence edu.uptymez.com – diameter (major)
edu.uptymez.com – Diameter (minor)
Note:
i) The equation of an ellipse is in the form of
edu.uptymez.com
edu.uptymez.com
ii) The equation of the parabola is in the form of
edu.uptymez.com
iii) The equation of the circle is in the form of
edu.uptymez.com

PARAMETRIC EQUATIONS OF AN ELLIPSE

The parametric equations of an ellipse are given as

edu.uptymez.com    And   edu.uptymez.com

Where

          θ – Is an eccentric angle

Recall

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

TANGENT TO AN ELLIPSE
This is the straight line which touches the ellipse at only one point

edu.uptymez.com

Where;
P – Is the point of tangent or contact
Condition for tangency to an ellipse
Consider the line b = mx + c is the tangent to an ellipse
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Examples
Show that, for a line edu.uptymez.com to touch the ellipse  edu.uptymez.com      Then,

edu.uptymez.com
GRADIENT OF TANGENT TO AN ELLIPSE
This can be expressed into;
i) Cartesian form
ii) Parametric form

1. GRADIENT OF TANGENT IN CARTESIAN FORM

– Consider an ellipse
edu.uptymez.com

Differentiate both sides with w.r.t x

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ii. GRADIENT OF TANGENT IN PARAMETRIC FORM

– Consider the parametric equation of an ellipse

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EQUATION OF TANGENT TO AN ELLIPSE

These can be expressed into;
i) Cartesian form
ii) Parametric form

I.   Equation of tangent in Cartesian form

– Consider the tangent an ellipse

edu.uptymez.com

edu.uptymez.com

                    Hence, the equation of tangent is given by

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EQUATION OF TANGENT IN PARAMETRIC FORM.

Consider the tangent to an ellipse edu.uptymez.com At the point edu.uptymez.com

edu.uptymez.com

Hence the equation of tangent is given by

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com


Note
1.    edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
2.       edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

EXERCISE
i. Show that the equation of tangent to an ellipse edu.uptymez.com
ii.  Show that the equation of tangent to an ellipse edu.uptymez.com
iii.  Show that the gradient of tangent to an ellipse edu.uptymez.com
NORMAL TO AN ELLIPSE
Normal to an ellipse perpendicular to the tangent at the point of tangency.

edu.uptymez.com

                Where: p is the point of tangency

Share this post on: