ADVANCED MATHEMATICS FORM 6 – COORDINATE GEOMETRY II

Share this post on:

GRADIENT OF THE NORMAL TO AN ELLIPSE.

This can be expressed into two
i) Cartesian form
ii) Parametric

I) IN CARTESIAN FORM

– Consider the gradient of the tangent in Cartesian form

But normal tangent

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

II) IN PARAMETRIC FORM
Consider the gradient of tangent in parametric form
edu.uptymez.com
Let m = slope of the normal in parametric form
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
EQUATION OF THE NORMAL TO AN ELLIPSE
This can be expressed into;
(i) Cartesian form
(ii)  Parametric form

I. IN CARTESIAN FORM

– consider the normal to an ellipse edu.uptymez.com

edu.uptymez.com

Hence the equation of the normal is given by

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

II) IN PARAMETRIC FORM
Consider the normal to an ellipse edu.uptymez.com

edu.uptymez.com

Hence the equation of the normal is given by
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
Examples
·         Show that the equation of the normal to an ellipse
edu.uptymez.com

CHORD OF AN ELLIPSE.

This is the line joining any two points on the curve ie (ellipse)

edu.uptymez.com

GRADIENT OF THE CHORD TO AN ELLIPSE.

This can be expressed into
i) Cartesian form
ii) Parametric form

I.  IN CARTESIAN FORM

– Consider the point A (x1, y1) and B (x2, y2) on the ellipse edu.uptymez.com hence the gradient of the cord is given by        edu.uptymez.com

II. IN PARAMETRIC FORM

Consider the points A edu.uptymez.com and B edu.uptymez.com on the ellipse edu.uptymez.com Hence the gradient of the chord is given by;
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EQUATION OF THE CHORD TO AN ELLIPSE

These can be expressed into
i) Cartesian form
ii) Parametric form

I:  IN CARTESIAN FORM.

Consider the chord the ellipse edu.uptymez.comat the point A (x1, y1) and B(x2,y2). Hence the equation of the chord is given by;
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

II.   IN PARAMETRIC FORM.

Consider the chord to an ellipse edu.uptymez.com at the pointsedu.uptymez.com. Hence the equation of the chord is given by
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

FOCAL CHORD OF AN ELLIPSE.

This is the chord passing through the focus of an ellipse

edu.uptymez.com

      Where edu.uptymez.com = is the focal chord
Consider the points A and B are respectively edu.uptymez.com Hence
Gradient of AS = gradient of BS
Where s = (ae, o)
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

DISTANCE BETWEEN TWO FOCI.

Consider the ellipse below;

edu.uptymez.com

                    edu.uptymez.com2

edu.uptymez.com2

edu.uptymez.com2

                                                edu.uptymez.com

Where a = is the semi major axis

e = is the eccentricity

DISTANCE BETWEEN DIRECTRICES.

Consider the ellipse below

            edu.uptymez.com

            edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com

edu.uptymez.com

Where a – is the semi major axis
e – is the eccentricity

LENGTH OF LATUS RECTUM.

Consider the ellipse below

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.comedu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

IMPORTANT RELATION OF AN ELLIPSE

Consider an ellipse  below

 edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

ECCENTRIC ANGLE OF ELLIPSE

.This is the angle introduced in the parametric equation of an ellipse
I.e edu.uptymez.com
Where     edu.uptymez.com – is an eccentric angle
CIRCLES OF AN ELLIPSE
These are 1) Director Circle
2) Auxiliary circle

1.   DIRECTOR CIRCLE
– This is the locus of the points of intersection of the perpendicular tangents.

          edu.uptymez.com

Consider the line edu.uptymez.com is tangent to the ellipse edu.uptymez.com
Hence
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

2.  AUXILIARY CIRCLE
– This is the circle whose radius is equal to semi – major axis

edu.uptymez.com

Using Pythagoras theorem

edu.uptymez.com

   a – is the radius of the auxiliary circle

CONCENTRIC ELLIPSE.

These are ellipse whose centre are the same.

edu.uptymez.com

The equations of centric ellipse are;

edu.uptymez.com

          Where  a and b semi – major and semi – minor axes of the small ellipse

A and B are the semi – major and semi – minor axes of the large ellipse

A – a = B – b

                         A – B = a – b·
Is the condition for concentric ellipse

Share this post on: