ADVANCED MATHEMATICS FORM 5 – COORDINATE GEOMETRY – part 2

Share this post on:

PARALLEL AND PERPENDICULAR LINES

   (a)   PARALLEL LINES

-Are the lines which never meet when they are produced

edu.uptymez.com

 Means that edu.uptymez.comis parallel to edu.uptymez.comsymbolically edu.uptymez.com//edu.uptymez.com

–        -However condition for two or more lines to be parallel state that they posses the same gradient.

     edu.uptymez.com

 edu.uptymez.com


b) PERPENDICULAR LINES

–        -Are the lines which intersect at right angle when they are produced.

edu.uptymez.com

Means that edu.uptymez.comis perpendicular to edu.uptymez.com

–        -Symbolically is denoted as  L1L2

–        -However the condition for two or more lines to be perpendicular states that “The product of their slopes should be equal to negative one”.

edu.uptymez.com

–        -Let consider the figure below

   
    edu.uptymez.com

edu.uptymez.com

NOTE:

1.      The equation of the line parallel to the line edu.uptymez.com= 0 passing through a certain point is of the form of edu.uptymez.com. Where  edu.uptymez.com– is constant.

2.      The equation of the line perpendicular to the line edu.uptymez.compass through a certain point is of the form of edu.uptymez.comwhen edu.uptymez.com– is constant.


3.      The calculation of K above done by substitution certain point passing through.

THE EQUATION OF PERPENDICULAR BI SECTOR

–        Let two point be A and B.

edu.uptymez.com

Where,

Line L is perpendicular bisector between point A and B.

Now our intention is to find the equation of L.

IMPORTANT STEPS

    1.   Determine the midpoint between point A and B.

    2.    Since L and edu.uptymez.comare   to each other then find slope of L.

for

edu.uptymez.com

   3.    Get equation of L as equation of perpendicular bisector of edu.uptymez.comby using edu.uptymez.comand mid point of A and B.

THE COORDINATE OF THE FOOT OF PERPENDICULAR FROM THE POINT

THE POINT TO THE LINE

–        -Our intention is to find the coordinate of the foot (x,y) which act as the point if intersection of edu.uptymez.comand edu.uptymez.com.

–        Let consider the figure below.

                             edu.uptymez.com


IMPORTANT STEPS

1.      Get slope of formatted line i.e. edu.uptymez.comand edu.uptymez.comthen use if to get slope of L2. Since edu.uptymez.com

2.      From equation of edu.uptymez.comby using edu.uptymez.comand point provided from.

3.      Get coordinate of the food by solving the equation edu.uptymez.comand edu.uptymez.comsimultaneously as the way Y please.

EXAMPLE

1.      Find the acute angle 6. between lines

edu.uptymez.comand

edu.uptymez.com

2.      Find the acute angle between the lines represented by edu.uptymez.com

3.      find the equation of the line in which such that X – axis bisect the angle between the with line edu.uptymez.com

4.      find the equation of perpendicular bisector between A edu.uptymez.comand B edu.uptymez.com

5.      Find the coordinate of the foot perpendicular from edu.uptymez.comof the line edu.uptymez.com

6.      Find the equation of the line parallel to the line 3x – 2y + 7 = 0 and passing through the point edu.uptymez.com

7.      find the equation if the line perpendicular to the line edu.uptymez.comand passing through the point edu.uptymez.com

8.      Find the equation of perpendicular bisector of AB. where A and B are the point edu.uptymez.comand edu.uptymez.comrespectively.

Solution

Given

         edu.uptymez.com

Consider

edu.uptymez.com

From
edu.uptymez.com

Also edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Recall

edu.uptymez.com=edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

θ2tan-1 1
Therefore;

edu.uptymez.com

2)

Solution

Given

edu.uptymez.com

Factorize completely

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

From

edu.uptymez.com

edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Recall

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

     edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Given

edu.uptymez.com

Consider the figure below

edu.uptymez.com

edu.uptymez.com

From

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

The slope is negative then at x –axis y=0

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

  edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

4) Solution

Given A edu.uptymez.comB edu.uptymez.com

edu.uptymez.com

From
edu.uptymez.com

Also

Midpoint = edu.uptymez.com

M.p = edu.uptymez.com

Then

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

The equation is

   edu.uptymez.com

Solution

Given edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

From

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

But

edu.uptymez.com

edu.uptymez.com

For the equation

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

The coordinate of the foot is edu.uptymez.com

The perpendicular line from point A edu.uptymez.comto the straight line edu.uptymez.comintersect the line at point B. if the perpendicular is extended to C in such a way that AB = edu.uptymez.com. Determine line coordinate of C.

Solution

edu.uptymez.com

Given

edu.uptymez.com

edu.uptymez.com


edu.uptymez.com

Let

edu.uptymez.com

From

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Then

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

The coordinate of is edu.uptymez.comsince point B edu.uptymez.comedu.uptymez.com

Recall

edu.uptymez.comedu.uptymez.com

Since

edu.uptymez.com

Then

edu.uptymez.com

For x

Compare off

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

For y

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

The coordinate of C is

edu.uptymez.com

Share this post on: