ADVANCED MATHEMATICS FORM 5 – COORDINATE GEOMETRY – part 2

Share this post on:

THE EQUATION OF ANGLE BISECTOR BETWEEN TWO LINES

*        Consider the figure below.

           edu.uptymez.com

Where, PM and PN are perpendicular distance from point P. which are always equal.


edu.uptymez.com

edu.uptymez.com 

Since

    edu.uptymez.com

Then

    edu.uptymez.com= edu.uptymez.com

  edu.uptymez.com

NOTE;

                    i)  for the edu.uptymez.comequation take +ve

      i            ii) for the edu.uptymez.comequation take –ve

THE CONCURRENT LINES

     These are the lines which intersect at the same point.

Example:

edu.uptymez.com


–        where edu.uptymez.comand edu.uptymez.comare concurrent line.


–        However the point of intersection if concurrent line normally calculated under the following steps.

1.        Select two equation of straight  line which relate to each other from the those equation provided.

2.      The get point of inter section of selected equation as usual. Points of intersection into the third equation in such a way that if the result of L.H.S is equal R.H.S imply that these line are currents lines.

Example;

                               i.Show that the lines edu.uptymez.com
edu.uptymez.com, and edu.uptymez.comare current lines

                              ii.  Determine the value of M for which the linesedu.uptymez.com, edu.uptymez.com– 3 = 0 and edu.uptymez.comare current.

                            iii.  Find the equation of bisect of angle formed by the lines represented by pair of the following.

a)      edu.uptymez.comand edu.uptymez.com

b)     edu.uptymez.comand edu.uptymez.com

Solution:

1)Given

     edu.uptymez.com

    edu.uptymez.com

    edu.uptymez.com

   edu.uptymez.com

   By solving since simultaneous equation

edu.uptymez.com

edu.uptymez.com)

edu.uptymez.com=edu.uptymez.com


For the first equation take the it be cones

     edu.uptymez.com

      edu.uptymez.com   

Then for the edu.uptymez.comequation take cones from

      edu.uptymez.com

          edu.uptymez.com= edu.uptymez.com
edu.uptymez.com

         edu.uptymez.com= edu.uptymez.com

The equations of base equation of the angle are

     edu.uptymez.com

     edu.uptymez.com

THE AREA OF TRIANGLE WITH THREE VERTICES

         By geometrical method.

     Consider the figure below.

       edu.uptymez.com

    Our intention is to find the area of edu.uptymez.com

Now,

   Area of edu.uptymez.com= area of trapezium ABED area of trapezium ACED

    But area of trapezium  edu.uptymez.com

Also consider, Area of trapezium ABED

    edu.uptymez.com

    Area of trapezium DCEF

      edu.uptymez.com


Area of trapezium

   edu.uptymez.com

    Then
edu.uptymez.com

But simplification the formula becomes

  edu.uptymez.com 

If ABC has A (x1, y1), B (x2, y2) and C (x3, y3) for immediately calculation of area the following technique should be applied by regarding three vertices of edu.uptymez.comas A (x1, y1), B (x2, y2) and C (x3, y3)

edu.uptymez.com

Area =edu.uptymez.com

Share this post on: