ADVANCED MATHEMATICS FORM 6 – DIFFERENTIAL EQUATION

Share this post on:

Second order Differential Equations

Second order differential equation is of the form of;

edu.uptymez.com 

Where a, b, c are constant coefficients and edu.uptymez.comis a given function of x

If  edu.uptymez.com the equation is homogeneous otherwise it is a non-homogeneous

Which of the following are linear H.D.Es

1.     edu.uptymez.com

2.     edu.uptymez.com

3.     edu.uptymez.com

4.     edu.uptymez.com

5.     edu.uptymez.com

Characteristic (Auxiliary) Equation for H.DE

Consider a linear non-homogeneous 2nd order D.E

edu.uptymez.com 

Let y = u and y=v be two solution of the equation 

Where u and v a functions of x

edu.uptymez.com 

edu.uptymez.com 

Adding (i)  & (ii) gives

 edu.uptymez.com

Then,

edu.uptymez.com edu.uptymez.com and

edu.uptymez.com edu.uptymez.com

Becomes

edu.uptymez.com edu.uptymez.com edu.uptymez.com 

If y = u and y = v are the solutions of the equation

edu.uptymez.com 

edu.uptymez.com

 Suppose a = 0

edu.uptymez.com 

i.e.  edu.uptymez.com 

edu.uptymez.com 

  edu.uptymez.com    (separable)

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com (where edu.uptymez.comis constant)

Take m for –k

–         edu.uptymez.comis the solution of dy +ky

Also will be the solution of the equation

edu.uptymez.com if it satisfies the equation

If edu.uptymez.com

     edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

The values will be edu.uptymez.com and edu.uptymez.com

If  edu.uptymez.com are two solution

edu.uptymez.com
 

Note that: 
If the Auxiliary equation has

(i)   Two real roots edu.uptymez.com edu.uptymez.com
      edu.uptymez.com
(ii)    Equal roots edu.uptymez.com

       edu.uptymez.com 
      The solution is edu.uptymez.com edu.uptymez.com

(iii)  2 Complex roots to the auxiliary equation

       edu.uptymez.com 
     The solution is edu.uptymez.com

Examples

Solve the following 2nd order Des

1.     edu.uptymez.com

Solution

Auxiliary equation edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com

2.     edu.uptymez.com

Solution

The auxiliary equation is

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

3.     edu.uptymez.com

      Solution

Auxiliary equation is

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

In this case P=-2 and q = edu.uptymez.com

edu.uptymez.com 

Exercise

Solve the following

1.     edu.uptymez.com 
 
2.     edu.uptymez.com 
 
3.     edu.uptymez.com
 

Non homogeneous 2nd order D.E

Consider the equation

edu.uptymez.com 

If  edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

General solution = complementary function +particular integrate

 

edu.uptymez.com

 

 

edu.uptymez.com

The general solution of (i) is given by

 Note that

edu.uptymez.com is called complementary function matas R.H.S Zero

Y = f (x) is called particular intergral makes R.H.S edu.uptymez.com0

Consider the R.H.S function

i.e if  edu.uptymez.com        assume   edu.uptymez.com

                edu.uptymez.com                  edu.uptymez.com

         edu.uptymez.com

        edu.uptymez.com 

       edu.uptymez.com

       edu.uptymez.com

 Examples

1.     Solve   edu.uptymez.com

Solution

C.F solve L.H.S = 0

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Assume edu.uptymez.com

              edu.uptymez.com

            edu.uptymez.com

Substituting in the given equation gives

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

2.     Solve   edu.uptymez.com

Solution

(i)   C.F: edu.uptymez.com 

      edu.uptymez.com 

         edu.uptymez.com 

       edu.uptymez.com 

(ii)    edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Substituting into the given equation

edu.uptymez.com 

edu.uptymez.com 

Collecting like terms

edu.uptymez.com 

Comparing L.H.S to R.H.s

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com  General solution

edu.uptymez.com 

3.     Solve    edu.uptymez.com

Given that edu.uptymez.com

Solution

C.F:  edu.uptymez.com

         edu.uptymez.com

         edu.uptymez.com

       edu.uptymez.com edu.uptymez.com

edu.uptymez.comI: Assume edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

 edu.uptymez.com edu.uptymez.com+2edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com edu.uptymez.com

Substitute into (i)

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com edu.uptymez.com

But y = 1, edu.uptymez.com

1= A + B + 1

A + B = 0

edu.uptymez.com 

edu.uptymez.comA-2B+3

edu.uptymez.com………………………….(i)

edu.uptymez.com 

B = 3

Substituting into (ii) gives

A + 3 = 0

A = -3

edu.uptymez.com 

4.     Solve edu.uptymez.com

Solution

           C.F: edu.uptymez.com
edu.uptymez.com 

            edu.uptymez.com 
             edu.uptymez.com
            edu.uptymez.com 
Let y = edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com5edu.uptymez.com 

2edu.uptymez.com 

2C=1

edu.uptymez.com 

edu.uptymez.com 

Note that: if P.I is contained in the C.F multiply the assumed P.I by x and go on

Example

Solve edu.uptymez.com

Solution

C.F:edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

P.I: Assume y =edu.uptymez.com

Since edu.uptymez.com is already contained edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

       edu.uptymez.com 

       edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com +Bedu.uptymez.com 

 Exercise

Solve the following

(i)     edu.uptymez.com

2nd order equations which are reducible to 1st order

Consider 2nd order equation which can not be written in the form
edu.uptymez.com 
i.e    edu.uptymez.com
Such equation will be solved by the substitution of: –

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Where A and B are constants
Example
Solve edu.uptymez.com
Solution
Let edu.uptymez.com
edu.uptymez.com 
edu.uptymez.com dx
edu.uptymez.com 
edu.uptymez.com 
edu.uptymez.com 
edu.uptymez.com 
edu.uptymez.com 
edu.uptymez.com 
edu.uptymez.com 
edu.uptymez.com 

Example

Solve edu.uptymez.com 

Solution

Let p = edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Example

edu.uptymez.com 

Solution

Let  edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

   edu.uptymez.com 

  edu.uptymez.com 

   edu.uptymez.com 

  edu.uptymez.com
In p= ln Ay where c= ln A
P = Ay

i.e. edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Note that:

      – If  P.I is contained in C.F, and C.F is of real  roots Assume edu.uptymez.com if edu.uptymez.com

      – If  C.F is a distinct root, but one root is the  same as that on P.I, assume edu.uptymez.comif edu.uptymez.com

      – If  edu.uptymez.com, assume edu.uptymez.com independently followed by edu.uptymez.com then add to obtained a P.I

Share this post on: