ADVANCED MATHEMATICS FORM 6 – DIFFERENTIAL EQUATION

Share this post on:

Applications of differential Equations

1.    i.  Population growth

The rate of population growth id differently proportional to the number of inhabitants present at specific time.

If N is the number of inhabitants at specific time.

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

When edu.uptymez.com

i.e.  edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com growth equation

edu.uptymez.com 

edu.uptymez.com 

If the population of a certain place  doubles in 50 years. After how many years will the population treble and the assumption that the rate of increase is proportional to the number of inhabitant in the place.

Solution

Let N be the number of inhabitants at time t.

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

When edu.uptymez.com

 edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com ………………………..(i)

When t = 50 years,   N=2edu.uptymez.com

edu.uptymez.com    

edu.uptymez.com =edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

K = edu.uptymez.com

Substituting into (i)

ln N = kt +ln No

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Example

The population of Kenya is known to increase to a rate proportional to the number of people living there at any given time. In 1986 the population was 1.1 times that of 1984 and 1987 the population was 18,000,000. What was the population in 1984?

Solution

Let N be the number of people at time, t

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

Share this post on: