BAM FORM 5 – DIFFERENTIATION

Share this post on:

Sub topics

-Differentiation by first principles
-Techniques of differentiation
-First and second derivatives
-Implicit differentiation
-Application of differentiation

DIFFERENTIATION BY FIRST PRINCIPLE

The concept of differentiation
The gradient of a curve at a given point is defined as the gradient of the tangent to the curve at that point and is given by the change of y with respect to x.

edu.uptymez.com

       As B   edu.uptymez.com   A

The gradient of the chord AB
The gradient of a tangent AT at point A

Or

Line  gradient of chord AB = gradient of tangent AT

Example

Find the gradient of the curve

    y = 2x2+ 5

Solution

    At point Q

  y + edu.uptymez.comy = 2 [x+ edu.uptymez.comx]2 +5
=2 [x2+ 2x edu.uptymez.comx+ edu.uptymez.comx2] +5
= 2x2 +4x edu.uptymez.comx + 2 edu.uptymez.comx2 +5…………. (i)

Subtracting y from equation (i)

y + edu.uptymez.comy –y = 2x2 + 4xedu.uptymez.comx + 2 edu.uptymez.comx2 +5 – [2x2 +5]
edu.uptymez.comy = 4xedu.uptymez.comx+ 2edu.uptymez.com2……….(ii)
Dividing ii…………. By edu.uptymez.comx

edu.uptymez.com  = 4x +2edu.uptymez.comx………….iii…

 As edu.uptymez.comedu.uptymez.com 0, edu.uptymez.comy  edu.uptymez.com 0

And

edu.uptymez.com 

 (iii) Becomes

 edu.uptymez.com

 edu.uptymez.com
Note: The expression edu.uptymez.com  is called derivative of y with respect  [w.r.t] to x

The process of finding derivatives is called DIFFERENTIATION.


Example
Differentiate y = x3 +1 with respect to x

Solution
Y +edu.uptymez.comy = [x +edu.uptymez.comx]3 +1
= x3+ 3x2
edu.uptymez.comx + 3xedu.uptymez.comx2+edu.uptymez.comx3+1

Subtracting y
y + edu.uptymez.comy-y = x3+3x2edu.uptymez.comx+3xedu.uptymez.comx2+edu.uptymez.comx3+1 – x3 – 1

edu.uptymez.comy = 3x2edu.uptymez.comx+3x edu.uptymez.comx2+edu.uptymez.comx3

Dividing by edu.uptymez.comx
edu.uptymez.com 

 As edu.uptymez.comx    edu.uptymez.com   0,    edu.uptymez.comedu.uptymez.com   edu.uptymez.com                     

edu.uptymez.com   edu.uptymez.com= 3x2

Examples

Find the gradients of the following curves

1.) 2x2-1

2.) y =x3-1

Solution

1)     2x2-1

y+edu.uptymez.comy = 2[x +edu.uptymez.comx]2-1
y+edu.uptymez.comy =2 [x2+2x edu.uptymez.comx+edu.uptymez.comx2]-1
y+edu.uptymez.comy = 2x2 +4x edu.uptymez.comx+edu.uptymez.comx2-1…………(i)

Subtracting y from(i)

y + edu.uptymez.comy – y = 2x2 + 4xedu.uptymez.comx + edu.uptymez.comx2 – 1 – [ 2x2-1]
edu.uptymez.comy = 2x2+ 4xedu.uptymez.comx+2edu.uptymez.comx2-1-2x2+1 ………………..(ii)

Dividing …..(ii) by edu.uptymez.comx
edu.uptymez.com
=4x + 2edu.uptymez.com  ………(iii)
As edu.uptymez.com edu.uptymez.com

(iii) Becomes
edu.uptymez.com = 4x

1.      y = x3 – 1

Solution

edu.uptymez.com

 Subtracting  y
y + edu.uptymez.comy-y = x3 + 3x 2edu.uptymez.com + 3xedu.uptymez.comx2 +edu.uptymez.comx3-1-x3 +1

edu.uptymez.comy =3x2edu.uptymez.comx+ 3xedu.uptymez.com+edu.uptymez.comx3

Dividing by edu.uptymez.com
edu.uptymez.com = edu.uptymez.com 


= 3x2 + 3xedu.uptymez.com + edu.uptymez.comx2

 As edu.uptymez.com, edu.uptymez.com

edu.uptymez.com  = 3x2

EXERCISE

Find the gradients of the following curves.

      1.)     y = x2

Solution

y + edu.uptymez.com2

             = x2 + 2x edu.uptymez.com + edu.uptymez.comx2                                                         

Subtracting y

y + edu.uptymez.comy-y= x2 + 2x edu.uptymez.com + edu.uptymez.comx2 -x2 

           edu.uptymez.comy = 2xedu.uptymez.comedu.uptymez.comx2

Dividing by edu.uptymez.com

edu.uptymez.com 

      = 2x +  edu.uptymez.com

As edu.uptymez.com

edu.uptymez.com = 2x


2.)
   
y= x3

Solution

y + edu.uptymez.comx = (x + edu.uptymez.com)3

           = x3 + 3x2edu.uptymez.com + 3xedu.uptymez.com2 + edu.uptymez.comx3…….(i)

Subtracting  y

 y + edu.uptymez.comy-y=X3 + 3x2 edu.uptymez.comx + 3xedu.uptymez.comx2 + edu.uptymez.comx3 – x3

              edu.uptymez.comy= 3x2edu.uptymez.comx + 3xedu.uptymez.comx2 + edu.uptymez.comx3………….(ii)

Dividing by edu.uptymez.comx

edu.uptymez.com = edu.uptymez.com 

= 3x2 + 3xedu.uptymez.comx + edu.uptymez.com2

As edu.uptymez.comx edu.uptymez.com0 , edu.uptymez.com   0 , edu.uptymez.comedu.uptymez.com

edu.uptymez.com edu.uptymez.comx2

       3.)   y = x

solution

y + edu.uptymez.comx = x + edu.uptymez.comx………….(i)

subtracting y

     y + edu.uptymez.comy-y= x + edu.uptymez.comx – x

edu.uptymez.comy= edu.uptymez.comx ………..(ii)

Dividing by  edu.uptymez.comx

edu.uptymez.com

edu.uptymez.com 1

4.)  y =3x2                             

Solution

y + edu.uptymez.comx = 3 [x +edu.uptymez.comx] 2

            =3 [x2+ 2x edu.uptymez.comx +edu.uptymez.comx2]

            =3x2+6x edu.uptymez.comx+3edu.uptymez.comx2 -3x2……….(i)

Subtracting  y

      y + edu.uptymez.comy-y= 3x2+6xedu.uptymez.comx+3edu.uptymez.comx2-3x2

                 edu.uptymez.comy= 6xedu.uptymez.comx+3edu.uptymez.comx2…….(ii)

Dividing by edu.uptymez.comx

edu.uptymez.com 

edu.uptymez.com

As edu.uptymez.comedu.uptymez.com 0, edu.uptymez.comy   edu.uptymez.com   0, edu.uptymez.comedu.uptymez.com

edu.uptymez.com
 5.) y = x2 +3x

Solution

y +edu.uptymez.comx = [x+edu.uptymez.comx]2 + 3[x+edu.uptymez.comx]

               x2+2xedu.uptymez.comx+ edu.uptymez.comx2+ 3x+3edu.uptymez.comx…………i

Subtracting y

 y + edu.uptymez.comy-y = X2 + 2xedu.uptymez.comx+ edu.uptymez.comx2+3x +3edu.uptymez.comx -(x 2 + 3x)

               edu.uptymez.comy = 2xedu.uptymez.comx + edu.uptymez.comx2 + 3edu.uptymez.comx……..ii

Dividing by edu.uptymez.comx

edu.uptymez.com 

= 2x +edu.uptymez.comx +3

As edu.uptymez.comx →0,edu.uptymez.comy → 0, edu.uptymez.comedu.uptymez.com

edu.uptymez.com 2x +3

Share this post on: