ADVANCED MATHEMATICS FORM 5 – DIFFERENTIATION

Share this post on:

DIFFERENTIATION OF A QUOTIENT [QUOTIENT RULE]

Let y =edu.uptymez.com where u and v are functions of x

           edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

As edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

Exercise

Differentiate the following with respect to x

                                I.    edu.uptymez.com

                             II.     edu.uptymez.com

DIFFERENTIATION  OF A FUNCTION [CHAIN RULE]

If y = f(u), where u = f(x)

Then

edu.uptymez.com

Therefore

edu.uptymez.com

edu.uptymez.com

PARAMETRIC EQUATIONS

Let y = f(t) , and x = g (t)

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example

        I.            Find edu.uptymez.com if y = at2 and x = 2at

Solution

edu.uptymez.com2at

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

IMPLICIT  FUNCTION

Implicit function is the one which is neither x nor y a subject e.g.

1)     x2+y2 = 25

2)     x2+y2+2xy=5

One thing to remember is that y is the function of x

Then

1.                edu.uptymez.com

            edu.uptymez.com

             edu.uptymez.com

             edu.uptymez.com

              edu.uptymez.com

                 edu.uptymez.com

2.     x2 +y2 + 2xy = 5

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

   
edu.uptymez.com

Exercise

Find edu.uptymez.comwhen x3 + y3 – 3xy2 = 8

Differentiation of trigonometric functions

1)     Let y = sin x….. i

edu.uptymez.com…(iiedu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com,edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Provided that x is measured in radian [small angle]

2. Let y = cos x …… (i)

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

3.      Let edu.uptymez.com

 edu.uptymez.com

From the quotient rule

edu.uptymez.com
 

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

4.      Let y = cot x

               edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

5.      y = edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

       edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Let y =cosec x

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Therefore           edu.uptymez.com

edu.uptymez.com

Differentiation of inverses

1)     Let y = sin-1x

      x = sin y

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

2)     Let y = cos-1 x

        x= cos y

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

3)     Let y = tan -1 x

      x = tan y

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Let y =edu.uptymez.com

       X = edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Exercises

        Differentiate the following with respect to x.

i)   Sin 6x

ii)   Cos (4x2+5)

iii)   Sec x tan 2 x

        Differentiate sin2 (2x+4) with respect to x

        Differentiate the following from first principle

i)    Tan x

ii)   edu.uptymez.com

Differentiation of logarithmic and exponential functions

1-     Let y = ln x

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example

Find the derivative of edu.uptymez.com

Solution

edu.uptymez.com

edu.uptymez.com

By quotient rule

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

2-     Let y = edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Differentiation of Exponents

1)     Let y = ax

If a function is in exponential form apply natural logarithms on both sides

i.e.  ln y = ln ax

ln y =x ln a

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

2)     Let edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Since â”®x does not depend on h,then

edu.uptymez.com

edu.uptymez.com

Therefore

edu.uptymez.com

Example

Find the derivative of y = 105x
Solution

Y = 105x

Iny = In105x

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Therefore

edu.uptymez.com

Exercise

Find the derivatives of the following functions

a)  a)   Y = edu.uptymez.com

b)    b) Y =edu.uptymez.com

c)     c)Y=edu.uptymez.com

Share this post on: