ADVANCED MATHEMATICS FORM 5 – DIFFERENTIATION

Share this post on:

APPLICATION OF DIFFERENTIATION

Differentiation is applied when finding the rates of change, tangent of a curve, maximum and minimum etc

i) The rate of change

Example

edu.uptymez.comThe side of a cube is increasing at the rate of 6cm/s. find the rate of increase of the volume when the length of a side is 9cm

Solution

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.comA hollow right circular cone is held vertex down wards beneath a tap leaking at the rate of 2cm3/s. find the rate of rise of the water level when the depth is 6cm given that the height of the cone is 18cm and its radius is 12cm.

Solution
edu.uptymez.com

Volume of the cone

Vedu.uptymez.com

The ratio of corresponding sides edu.uptymez.com

edu.uptymez.com

Given edu.uptymez.com= 20cm3/s edu.uptymez.com

V=edu.uptymez.com

So ,edu.uptymez.com

Then,edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.comA horse trough has triangular cross section of height 25cm and base 30cm and is 2m long. A horse is drinking steadily and when the water level is 5cm below the top is being lowered at the rate of 1cm/min find the rate of consumption in litres per minute

Solution

edu.uptymez.com

Volume of horse trough

edu.uptymez.com

edu.uptymez.com

From the ratio of the corresponding sides

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

     edu.uptymez.com

edu.uptymez.com edu.uptymez.com 

edu.uptymez.comA rectangle is twice as long as it is broad find the rate change of the perimeter when the width of the rectangle is 1m and its area is changing at the rate of 18cm2/s assuming the expansion is uniform

Solution

   edu.uptymez.com                                                                                                                                                                                                              

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

TANGENTS AND NORMALS

From a curve we can find the equations of the tangent and the normal

                         edu.uptymez.com

Example

        i.            Find the equations of the tangents to the curve  y =2x2 +x-6 when x=3

Solution

edu.uptymez.com 

edu.uptymez.com

(x. y)= (3, 5) is the point of contact of the curve with the tangent

But

Gradient of the tangent at the curve is

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Example

     ii.            Find the equation of the tangent and normal to the curve y = x2 – 3x + 2 at the point where it cuts y axis

Solution

The curve cuts y – axis when x = 0

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Slope of the tangent [m] = -3

Equation of the tangent at (0, 2) is

edu.uptymez.com

edu.uptymez.com

Slope of the normal

From; m1m2 = -1,Given m1=-3

edu.uptymez.com

edu.uptymez.com

Equation of the normal is

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Exercise

  Find the equation of the tangent to 2x2 – 3x which has a gradient of 1

  Find the equations of the normal  to the curve  y = x2-5x +6 at the points where the curve cuts the x axis

Stationary points [turning points]

A stationary point is the one where by edu.uptymez.com = 0 it involves:

        Minimum turning point

        Maximum turning point 

        Point of inflection                                                                                     

     edu.uptymez.com                              

Nature of the curve of the function

At point A, a maximum value of a function occurs

At point B, a minimum value of a function occurs

At point C, a point of inflection occurs

At the point of inflection is a form of S bend

Note that

Points A, B and C are called turning points on the graph or stationary values of the function

Investigating the nature of the turning point

 Minimum points

edu.uptymez.com

At turning points the gradient edu.uptymez.com  changes from being negative to positive i.e.

 edu.uptymez.comIncreasing as x- increases

edu.uptymez.com Is positive at the minimum point         

edu.uptymez.com  Is positive for minimum value of the function of (y)  

Maximum points

At maximum period the gradient changes from positive to negative

i.e.

edu.uptymez.com

  edu.uptymez.com Decreases as x- increases

edu.uptymez.com Is negative at the maximum value of the function (y)

Point of inflection 

edu.uptymez.com

This is the changes of the gradient from positive to positive

edu.uptymez.com Is positive just to the left and just to the left

  edu.uptymez.com

This is changes of the gradient from negative to negative.

edu.uptymez.com Is negative just to the left and just to the right

  edu.uptymez.com Is zero for a point of inflection i.e

   edu.uptymez.com  Is zero for point of inflection

Examples

Find the stationary points of the and state the nature of these points of the following functions

Y = x4 +4x3-6

Solution

edu.uptymez.com

edu.uptymez.com

At stationary points edu.uptymez.com

edu.uptymez.com

Therefore,edu.uptymez.com

Then the value of a function

At x = 0, y = -6

X= -3, y =-33

Stationary point at (0,-6) and (-3,-33)

At (0,-6)

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Point (0,-6) is a point of inflection

        At (-3,-33)

edu.uptymez.com

edu.uptymez.com

At (-3, -33) is a minimum point

Alternatively,

You test  edu.uptymez.com  by taking values of x just to the right and left of the turning point

Exercise

1)     1. Find and classify the stationary points of the following curves

a)     (i) y = 2x-x2     

b)     (ii) y = edu.uptymez.com +x

c)     (iii) y= x2(x2– 8x)

2)    2. Determine the smallest positive value of x at which a point of inflection occurs on the graph of y = 3â”®2x cos (2x-3)

3)    3. If 4x2 + 8xy +9y2 8x – 24y +4 =0 show that when edu.uptymez.com= 0,

x + y = 1. Hence find the maximum and minimum values of y

Example

     1. A farmer has 100m of metal railing with which to form two adjacent sides of a rectangular enclosure, the other two sides being two existing walls of the yard meeting at right angles, what dimensions will give  the maximum possible area?

Solution       

          edu.uptymez.com                                  

Where, W is the width of the new wall

           L is the length of the new wall

The length of the metal railing is 100m

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

      2. An open  card board box width a square base is required to hold 108cm3 what should be the dimensions if the area of cardboard used is as small as possible

Solution

                 edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Exercise

The gradient function of y = ax2 +bx +c is 4x+2. The function has a maximum value of 1, find the values of a, b, and c

Share this post on: