ADVANCED MATHEMATICS FORM 5 – DIFFERENTIATION

Share this post on:

MACLAURIN’S SERIES [from power series ]

Let f(x) = a1 +a2x+a3x2 +a4x3 +a5x4+ a6x5…….i

In order to establish the series we have to find the values of the constant co efficient a1, a2, a3, a4, a5, a6 etc

Put x = 0 in …i

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Putting the expressions a1,a2,a3,a4,a5,………back to the original series and get

edu.uptymez.comwhich is the maclaurin series.

Examples

Expand the following

i)    â”®x

ii)  f(x) = cos x

Solution

        i.      edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

     ii.                        edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Exercise

        Write down the expansion of  edu.uptymez.com                               

        If x is so small that x3 and higher powers of x may be neglected, show that edu.uptymez.com

TAYLOR’S SERIES

Taylor’s series is an expansion useful for finding an approximation for f(x) when x is close to a

By expanding f(x) as a series of ascending powers of (x-a)

f(x) = a0 +a1(x-a) +a2(x-a)2+a3(x-a)3 +……..

This becomes

edu.uptymez.com

Example  

        Expand edu.uptymez.comin ascending powers of h up to the h3 term, taking edu.uptymez.comas                

1.7321 And 5.50 as 0.09599c find the value of cos 54.5 to three decimal places

Solution

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

        Obtain the expansion of edu.uptymez.comin ascending powers of x as far as the x3term

Introduction to partial derivative

Let f (x, y) be a differentiable function of two variables. If y kept constant and differentiates f (assuming f is differentiable with respect to x)

edu.uptymez.com

Keeping x constant and differentiate f with respect to y

edu.uptymez.com

Example

        find the partial derivatives of fx and fy

If f(x, y) = x2y +2x+y

Solution

edu.uptymez.com

edu.uptymez.com

        edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

        Find fx and fy if f (x,y) is given by

f(x, y) = sin(xy) +cos x

Solution

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Exercise 

1.      find fx and fy if f(x,y) is given by 

a)     edu.uptymez.com

b)     edu.uptymez.com

c)     edu.uptymez.com

d)     edu.uptymez.com

     Suppose edu.uptymez.com compute edu.uptymez.com

Share this post on: