BAM FORM 5 – DIFFERENTIATION

Share this post on:

Differentiating by using product rule

Let y = uv where U and V are functions of x

If x edu.uptymez.com  x + edu.uptymez.comx, then U   edu.uptymez.com   u + edu.uptymez.comu

And V edu.uptymez.com  V +edu.uptymez.comv

y   edu.uptymez.com  y + edu.uptymez.comy

y + edu.uptymez.comy = [u +edu.uptymez.comu] [v + edu.uptymez.comv]

= uv + uδv + v edu.uptymez.comu + edu.uptymez.comu edu.uptymez.comv …… i

Subtracting y from …(.i)….

y + edu.uptymez.comy –y = uv +uδv + vδu +edu.uptymez.comu edu.uptymez.comu – uv
edu.uptymez.comy = uδv+ vedu.uptymez.comu + edu.uptymez.comu edu.uptymez.comv ….(ii)

Dividing [ii] by edu.uptymez.comx

 edu.uptymez.com


Exercise

edu.uptymez.com

Differentiating using quotient rule

edu.uptymez.com
then

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

Divide by δx in equation (i) throughout. 

edu.uptymez.com

Taking the limits a

edu.uptymez.com
edu.uptymez.com

Then

edu.uptymez.com
Exercise:Differentiate
edu.uptymez.com
edu.uptymez.com
 
Solutions

y = x/cos x

 Let u = x, v = cos x

edu.uptymez.com

 edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com
 

FIRST AND SECOND DERIVATIVES

The first derivative of the function

For example

If f [x] = x4

edu.uptymez.com        

The second derivative is the derivative of the first derivative

For example

If f [x] = x4

Then

edu.uptymez.com
    edu.uptymez.com  = [4x3]   

         = 12x2

edu.uptymez.com 

Examples

Find the second derivative of the following with respect to x

y = 2x5+ 4x3

y = x2+2x+1

Solution
edu.uptymez.com

       4.)   y = x2 + 2x+1
edu.uptymez.com        

  Note

d2y/dx2 may be represented by y” 0r f”(x).

Exercise

Find the derivative of the following

          a.)  f [ x] = x3+ 4x2-6x

          b.)  f [ x] = x2+3x

           c.) f [ x] = 3x2+8x-6

           d.)   f [ x] = sin x

            e.)   f [ x] = cos x

Find f”(2) if

i.)    f[ x] = x5+ 2x3-9x2+7x-1

ii.)
f[ x] = x4+5

iii.)  f[ x] = x3 +4x2 – 6

Solution

1 a)    f [x] = x3+4x2-6x

                 y = x3+4x2-6x
edu.uptymez.com
edu.uptymez.com

b) f [x] = x2 + 3x

    y = x2 +3x

     edu.uptymez.com

   c) f [x] = 3x2+8x-6

            y = 3x2+8x-6

            edu.uptymez.com

  d) f [x] = sin x

        y = sin x

     edu.uptymez.com  = cos x

    edu.uptymez.com

e) f [ x] = cos x

         y = cos x

     edu.uptymez.com= -sin x

edu.uptymez.com
 

Solution

a) f [x] = x5+2x3-9x2+7x-1

y = x5+2x3-9x2+7x-1

f ‘[x] = 5x4+6x2-18x +7

f”[x] = 20x3+12x- 18

f”[2] = 20[2]3 + 12[ 2] -18

f “[2] = 160+24-18
f “[2] = 166

b) f [x] = x4+5

edu.uptymez.com   

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com= 24x

f “‘ (2) = 24(2)  

  f “‘(2) = 48

c) f(x) = x3 + 4x2 – 6

   y = x3 + 4x2 – 6
Solution.

   y’= 3x2 + 8x

   y”(2)= 6x + 8

   y”(2)= 6(2) + 8

   y”(2)= 12+8
y”(2)=20

IMPLICIT DIFFERENTIATION

Consider the following functions

i) y = x2+4x+2

edu.uptymez.comy is an explicit function of x because it is considered completely in terms of x

ii) xy + sin y = 2

edu.uptymez.comY is an implicit function of x because it is implied in the function of x

Example

1.)   Findedu.uptymez.com  if x2y3 – xy = 10          

2.)   Find edu.uptymez.com  if y = sin x + cos y            

      3.)   Find edu.uptymez.comat [ -1,1] if x2 +3xy +y2 = 1

  Solutions

          1.)   x2y3 – xy = 10
edu.uptymez.com

           2.)    y = sin x + cos y

      edu.uptymez.com   = cos x + [-sin y edu.uptymez.com]

            edu.uptymez.com  +sinedu.uptymez.com = cos x

         [1+ sin y] edu.uptymez.com = cos x

        edu.uptymez.com   =  edu.uptymez.com
 

            3.)   x2 + 3xy +y2= 1

         2x +3[ y + xedu.uptymez.com] + 2y edu.uptymez.com= 0

         2x + 3y +3x edu.uptymez.com+2y edu.uptymez.com= 0

         2x +3y + [3x + 2y] edu.uptymez.com= 0             

          edu.uptymez.com= edu.uptymez.com

        At [-1,1 ]  edu.uptymez.com   = edu.uptymez.com 

                      edu.uptymez.com

Exercise

Find dy/dx from the following equations

1) edu.uptymez.com   

2) edu.uptymez.com

3) edu.uptymez.com 

4) edu.uptymez.com  

5)  edu.uptymez.com 

b) Rate of change

This is the change of one variable with respect to time

Examples

(1)The distances [meters] travelled by a body moving in a straight line in t [seconds] is given by S= 3t3-4t2

Find

The velocity after 2 seconds

The initial acceleration

(2)A 20m ladder leans a wall the top slides down at a rate of 4m/s . how fast is the bottom of the ladder moving when it is 16m from the wall

Solutions

If a   edu.uptymez.com 

edu.uptymez.com

Differentiate [3t3-4t2]

edu.uptymez.com

When t = 2, v = 9 x [ 2] – 8 [ 2]

v = [9 x 4] -16

v = 36-16

v = 20m /s

  The velocity after 2 seconds is

20m / s

a =  edu.uptymez.com 

Initial acceleration is when t = 0

edu.uptymez.com


Solution

edu.uptymez.com

edu.uptymez.com………….(i)                                                                                                          

Differentiate [i] w.r.t     ‘t’

2xedu.uptymez.com = 0

edu.uptymez.com 

From [i]

y2 = 202-x2

y2 = [400] – [16]2

y2 = 400 – 256

edu.uptymez.com                     

edu.uptymez.comy = 12

Substitute x and y in ii

16 dx /dt +12 dy /dt = 0

edu.uptymez.com 

= edu.uptymez.com       

= 3 m /s

The bottom of the ladder is moving with the speed of 3m/s

Exercise

            1.)   The effectiveness of a  pain killing drug t incurs after entering the blood stream is given by

    edu.uptymez.com 

          Find the rate of change of edu.uptymez.com after

                  a.)   2 hours

                  b.)   3 hours

            2.)   A particle is moving in a straight line and its distance  s in meters from a fixed point in the line after seconds is given by s = 12t – 15t2+4t3

          Find

         a.) the velocity of the particle after 3 seconds

         b.) the acceleration of the particles after 3 seconds.

     3.) When the height of a liquid in a container is h meters the volume of the liquid is v meters where v = 0.005 [3h +2]3-8

         a.) Find the expression for dv/dh

         b.) The liquid enters the container at of 0.08m3/s rate at which the height of the liquid is increasing when v = 0.95m3

Share this post on: