BAM FORM 5 – DIFFERENTIATION

Share this post on:

HOW TO DETERMINE THE TYPE OF CRITICAL POINT

By testing the sign of the gradient on either sides of  edu.uptymez.com

By finding the second derivative of the function

If d2y / dx2 is [+ve] we have the minimum point

If d2y / dx2 is [-ve] we have maximum point

If d2y  =  0 we have either maximum, minimum or point or inflexion
dx2

Examples

i)    y = x2 + 4x + 3

i.)   edu.uptymez.com 

iii.)  edu.uptymez.com 

Solution

y = x2 + 4x +3

dy/ dx = 2x +4

When dy / dx = 0

2x +4 = 0

2x = -4

x = -2

Testing the sign of gradient

 Value of x L -2 R
 Sign of dy/dx 0 +

 

edu.uptymez.com

edu.uptymez.comThe minimum value of y = (-2)2 + 4(-2) + 3

y = 4 -8 + 3

                                          y   = -1

Alternatively

d2y / dx2 = 2

Since

d2y / dx2 are (+ve), the function has minimum value

When dy / dx = 0

y = (-2)2 +4 (-2) + 3

y = 4-8+3

y = 4-5

y = -1

Solution

y = edu.uptymez.com  

dy / dx = edu.uptymez.com 

When dy / dx = 0

edu.uptymez.com 

-2x = 1

y = – ½

Now d2y / dx2 = -2[max pt]

The minimum value is

y = 2 – [- ½] – [-1/2] 2

y = 2+edu.uptymez.comedu.uptymez.com = edu.uptymez.com

Share this post on: