ADVANCED MATHEMATICS FORM 5 – ET THEORY

Share this post on:

SET INTERVAL ON THE NUMBER LINE

1.    Let A = edu.uptymez.comand B={xIR:-7< x ≤ 3}Represents these set intervals on two separate number lines

            Solutions

            For A = edu.uptymez.com               

edu.uptymez.com

    For B = edu.uptymez.com

edu.uptymez.com


Examples

            Using the sets A and B defined above, state and represents the following sets on same number line

            a) A edu.uptymez.com B        b) A′  c) B′   d) A U B′

            Solutions

            a) A edu.uptymez.com B

            edu.uptymez.com

            A edu.uptymez.com B = edu.uptymez.com

            b) A′

edu.uptymez.com

            A′ = edu.uptymez.com

c)B′

             edu.uptymez.com

            B′ = edu.uptymez.com

a)                       
(d)A U B′

edu.uptymez.com

            A U B′ =edu.uptymez.com

QUESTION
edu.uptymez.com

edu.uptymez.com

i) Represent the above sets on one number line

ii) Draw and state each of the following sets on separate number lines

a) A ∩ B         b) A B         c) B′   d) A∩B′
Solution
(i)
edu.uptymez.com

(ii)(a) Aedu.uptymez.com

edu.uptymez.com

edu.uptymez.com

b) A U B

edu.uptymez.com

edu.uptymez.com

c) B′

edu.uptymez.com

edu.uptymez.com

 

edu.uptymez.comedu.uptymez.com

edu.uptymez.com

QUESTIONS.

1.  Represents and then draw on one number line the following set interval

            edu.uptymez.com

                   edu.uptymez.com

               edu.uptymez.com

            Using the above set interval, represent and state the following

            i) A edu.uptymez.com B     ii) A edu.uptymez.com C        iii) C edu.uptymez.com B     iv) (Aedu.uptymez.comB) edu.uptymez.com C                                                        

VENN DIAGRAMS

Sets can be represented in the form of diagrams called Venn diagrams

        –   The universal set is represented by a rectangle

   Subsets of U are represented by a circle in universal set

edu.uptymez.com

                  edu.uptymez.com

                  edu.uptymez.com

edu.uptymez.com

edu.uptymez.com     

                                           edu.uptymez.com

Uses of Venn diagram

            i) To illustrate sets identity

            ii) To find number of members in a given set

1.  Illustration of set identity

     Example;  Illustrate by use of Venn diagram (A U B) edu.uptymez.com A = A

            Solution.

Two different methods can be used

i)     Shading method

ii)    Numbering of disjoint subsets

            i) Shading method, i.e. to show (A edu.uptymez.comB) ∩ A = A

                        L. H. S → (A edu.uptymez.com B) ∩ A                                                            

                        Shade (A edu.uptymez.com B) by vertical lines

                        Shade (A edu.uptymez.com B) edu.uptymez.com A by horizontal lines

                        Now (A edu.uptymez.com B) edu.uptymez.com A = region shaded                     

                                               = A

                                               = R. H. S

                        edu.uptymez.comedu.uptymez.com
             (A edu.uptymez.comB) edu.uptymez.com A = A

            ii) Numbering of disjoint

                        Solutions

                        L. H. S = (A edu.uptymez.com B) edu.uptymez.com A                    

                        Now A edu.uptymez.com B = subsets 1, 2, 3

                        But A = sub 1, 2

                        (A edu.uptymez.com B) edu.uptymez.com A = subsets 1, 2

                 =A

                 = R. H. S

edu.uptymez.com

Example

Use Venn diagram to show Aedu.uptymez.com (B edu.uptymez.com C) = (A edu.uptymez.com B) edu.uptymez.com (A edu.uptymez.com C)

Solution

edu.uptymez.com

L. H. S = A U (B edu.uptymez.com C)

Now B edu.uptymez.com C edu.uptymez.com subsets 5, 6

A U (B edu.uptymez.com C)edu.uptymez.com  Subsets 1, 2, 5, 4 and 6

R. H. S = (A U B) edu.uptymez.com (A U C)

A U Bedu.uptymez.com subsets 1, 2, 3, 4, 5, 6 

A U C edu.uptymez.com subsets 1, 2, 3, 4, 5, 6, 7

(A U B) ∩ (A U C) = 1, 2, 5, 4, 6

      Aedu.uptymez.com (B edu.uptymez.com C) = (Aedu.uptymez.comB) edu.uptymez.com (A edu.uptymez.com C)

QUESTION

Use a Venn diagram to show the following

i) (A edu.uptymez.com B) edu.uptymez.com A = A

ii) Aedu.uptymez.com (B edu.uptymez.com C) = (A edu.uptymez.com B) edu.uptymez.com (A edu.uptymez.com C)

LAWS OF ALGEBRA OF SETS

Set operations obey the following laws

1.  Commutative laws

            A U B = B U A

            A edu.uptymez.com B = B edu.uptymez.com A

2.  Associative laws

            a) (A U B) U C = A U (B U C)

            b) (A edu.uptymez.com B) edu.uptymez.com C = A edu.uptymez.com (B edu.uptymez.com C)

3.  Distributive laws

            a) A U (B edu.uptymez.com C) = (A U B) edu.uptymez.com(A U C)

            b) A edu.uptymez.com (B U C) = (A edu.uptymez.com B) edu.uptymez.com(A edu.uptymez.com C)

4.  De -Morgan’s laws

            a) (A U B)′ = A′ edu.uptymez.com B′

            b) (A edu.uptymez.com B)′ = A′U B′

5.  Identity laws

            a) A edu.uptymez.com µ = µ

            b) A edu.uptymez.com µ = A

            c) A edu.uptymez.com Φ = A

            d) A edu.uptymez.com Φ =Φ

            e) A\Φ = A

            f) A\A = Φ

Examples

Use laws of algebra of set to simplify

1.   (Aedu.uptymez.com (A edu.uptymez.com B)′)′

            Solution

            (A edu.uptymez.com (A edu.uptymez.com B)′)′ ≡(Aedu.uptymez.com (A′ edu.uptymez.comB′))′ De-Morgan’s law

≡((A edu.uptymez.comA′)edu.uptymez.com B′ )′Associative law

≡ (Φ edu.uptymez.comB′) Complement law

≡ (Φ)′Identity law

≡ µ complement law

            edu.uptymez.com(Aedu.uptymez.com(A U B)′)′ = µ

Examples

Use the laws of algebra of sets to prove

            (Aedu.uptymez.com (B edu.uptymez.com C′)) edu.uptymez.com C = (A edu.uptymez.com C) edu.uptymez.com (B edu.uptymez.com C)

            Solution

            L.H.S  (Aedu.uptymez.com (B edu.uptymez.comC′)) edu.uptymez.com C

                       = (((A edu.uptymez.com B) C′)edu.uptymez.com C…….. Associative law

                        =((A edu.uptymez.com B) U C) edu.uptymez.com (C′ edu.uptymez.com C) ………distributive law

                        = ((A edu.uptymez.com B) edu.uptymez.com C) edu.uptymez.com(µ) …………complement law

                        = (A edu.uptymez.com B) edu.uptymez.com C……………. identity law

                        = (A edu.uptymez.com C) edu.uptymez.com (B edu.uptymez.com C) ……………distributive law

                        = R. H. S

Exercise

1. Use laws of algebra of set to simply

            i) (A edu.uptymez.com B) edu.uptymez.com (A edu.uptymez.com B’)

            ii) (A’ edu.uptymez.com B’) edu.uptymez.com (A edu.uptymez.com B)

            iii) (A edu.uptymez.com B) U (A – B)

            iv) A edu.uptymez.com (A edu.uptymez.com B)

2.  Use laws of algebra to prove

            i) (Z edu.uptymez.com W)′ edu.uptymez.com W = Φ

            ii) (X edu.uptymez.comY’) edu.uptymez.com (X edu.uptymez.comY) edu.uptymez.com (Y edu.uptymez.comX′) = X edu.uptymez.comY

            iii) (A – B) edu.uptymez.com A = A

            Note
A – B = A edu.uptymez.com B′ by definition

Number of elements in a set

The number of elements in set A is denoted by n (A)

Example

Let A be a set of all positive odd integers which are less than 10. Find n (A)

Solution

A = {1, 3, 5, 7, 9}

Now n (A) = 5

Examples

Let A ={x IR:x2-x-2=0}. Find n (A)

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

            Note

            i) The number of elements of a set is defined only for a finite set

            ii) If A edu.uptymez.com U then the number of elements of A′ is n(A′) = n(µ) – n(A)

            Example

            If A edu.uptymez.com U and B edu.uptymez.com U then show that n (A edu.uptymez.com B) = n(A) + n(B) – n(A edu.uptymez.com B)

            Proof

            Refer to the Venn diagram below

            edu.uptymez.com

Represents the number of elements in disjoint subset as follows
Let n (A edu.uptymez.com B′) = a    n (A′ edu.uptymez.com B) = c
n (A edu.uptymez.com B) = b

                                               R. H. S = n (A) + n (B) – n (A edu.uptymez.com B)

                                                           = (a + b) + (b + c) – b                                

                                                           = a + 2b + c – b

                                                           = a + b + c

                                                            n (A edu.uptymez.com B)

                                                           L. H. S

Share this post on: