ADVANCED MATHEMATICS FORM 5 – ET THEORY

Share this post on:

EXAMPLE

1.  Given n (X) = 18,     n (Y) = 26, n (X ∩ Y) = 12. Find n (X edu.uptymez.comY)

2.  Given n (S edu.uptymez.com T) = 19,  n (s) = 15.   n (S edu.uptymez.com T′) = 10. Find   n(S edu.uptymez.com T)                                       

3.  Given n (A edu.uptymez.com B) = 15

                        n (A edu.uptymez.com B) = 16

                        n ((A edu.uptymez.com B)′) = 4

                        n (A – B) = 8

Find i) n (A)  ii) n (A edu.uptymez.com B′)   iii) n (µ)     iv) n (A′ edu.uptymez.com B)

Solutions

1.  n (Xedu.uptymez.com Y) = n (X) + n (Y) – n (Xedu.uptymez.com Y)

                                   =18 + 26 – 12

                                   = 32

                        n (Xedu.uptymez.com Y) = 32

2.   n(S edu.uptymez.com T) = 19, n(S) = 15, n(S edu.uptymez.com T’) = 10

       i) n(S edu.uptymez.com T) =?                      

      n(S edu.uptymez.com T) = n(S) – n(S edu.uptymez.com T’)

           = 15 – 10

            = 5

         n( S edu.uptymez.com T) = 5                                                                                             

3.         n(A edu.uptymez.com B) = 5, n(A edu.uptymez.com B) = 16, n(A edu.uptymez.com B)′ = 4, n(A – B) = 8

            i) n(A) =?      ii) n (A edu.uptymez.comB′)    iii) n(µ)  iv) n (A′edu.uptymez.comB)

            Solutions

n (A) = n(A – B) + n(A edu.uptymez.com B)

                        = 8 + 5

                        = 13

            ii) n (A edu.uptymez.com B’) = n (A) + n(B′)

                        = 13 + 4

                        = 17

                         n(A edu.uptymez.com B’) = 17

            iii) n(µ) = n(A edu.uptymez.com B) + n(( A edu.uptymez.com B))′

                        = 16 + 4

                        = 20

                        n(µ) = 20

            iv) n(A′edu.uptymez.com B) = n(B) – n(A edu.uptymez.com B)

                        n(A′ edu.uptymez.com B) = n(Aedu.uptymez.com B) – n(A) + n(A edu.uptymez.com B) – n (n (A edu.uptymez.com B))

                        n(A′ edu.uptymez.com B) = 16 – 13

                        n (A′edu.uptymez.com  B) = 3

4. By using n (A edu.uptymez.com B) = n(A) + n(B) – n(Aedu.uptymez.com B) show that;

n(A edu.uptymez.com B edu.uptymez.com C) = n(A) + n(B) + n(C) – n(A edu.uptymez.com B) – n(A edu.uptymez.com C) – n(B edu.uptymez.com C) + n(Aedu.uptymez.com B edu.uptymez.com C)

Solutions

Let B edu.uptymez.com C = K

L.H.S n(A edu.uptymez.com B edu.uptymez.com C) = n(A edu.uptymez.com K)

                       = n(A) + n(K) – n(A edu.uptymez.com K)

                       = n(A) + n(B edu.uptymez.com C) – n(A edu.uptymez.com (B edu.uptymez.com C))       

                       = n(A) + n(B) + n(C) – n(B edu.uptymez.com C) – n((A edu.uptymez.com B) edu.uptymez.com (A edu.uptymez.comC))

                                   = n(A) + n(B) + n(C) – n(B edu.uptymez.com C) – (n(A edu.uptymez.com B) + n( A edu.uptymez.com C) – n((A edu.uptymez.com B)edu.uptymez.com(A edu.uptymez.com C))

                       = n(A) + n(B) + n(C) – n(B edu.uptymez.com C) – n(A edu.uptymez.com B) – n(A edu.uptymez.com C) + n(A edu.uptymez.com B edu.uptymez.com C)

Questions

There are 26 animals in zoo, 5 animals eat all type of food in the zoo i.e. grass, meat and bones. 6 animals eat grass and meat only, 2 animals eat grass and bones only, 4 animals eat meat and bones only. The number of animals eating one type of food only is divided equally between the three types of food.

i) Illustrate the above information by a labeled Venn diagram

ii) Find the number of animals eating grass

Solutions
edu.uptymez.com

               Let M edu.uptymez.comset of animals that eat meat

               Let B edu.uptymez.comset of animals that eat bones

               Let G edu.uptymez.com set of animals that eat grass

            3edu.uptymez.com + 6 + 5 + 4 + 2 = 26

            3edu.uptymez.com + 17 = 26

            edu.uptymez.com                                                                                                                                

            edu.uptymez.com = 3

            ii) Number of animals eating grass

            = 6 + 5 + 2 + 3

            = 16 animals                       

Questions    

1. A class has 15 boys and 15 girls. In the class 20 students are studying science, 14  students are studying math, 10 boys are studying science, 10 boys are studying math, 8 boys are studying both math and science, 4 girls are studying neither math nor science.

            Find    i) How many students study math only?

                        ii) How many students study science only?

                        iii) How many students study both math and science?

2.  In a class of 35 students each students each student takes either one of two subjects   (physics, chemistry and biology). If 13 students take chemistry, 22 students take physics,17 students take biology, 6 students take both physics and chemistry and 3 students  take both biology and chemistry. Find the number of students who take both biology  and physics.

            Solutions

            edu.uptymez.com
                                                                                                                            

Since there are 15 girls

            10 – edu.uptymez.com + edu.uptymez.com + 4 – edu.uptymez.com + 4 = 15

                        18 – edu.uptymez.com = 15

                        edu.uptymez.com = 3

            i) Students who study math only = 2 + 1

                                                               = 3 students       

            ii) Students who study science only = 2 + 7

                                                                     = 9 students

            iii) Students who study both math and science = 8 + 3

                                                                                     = 11 students                                           

QUESTIONS

1. In a certain college apart from other discipline, no students is allowed to study less than two of the subjects, finance, accounting and economics, 150 students study finance, 110 study accounting, 80 study economics and 20 study three subjects

            i) How many students study two of the named subjects?

            ii) How many study finance or accounting or economic?      

2. One poultry farm in Dar produces three types of chicks and in six months report revealed that out of 126 of its regular customers, 65 bought broilers, 80 bought layers and 75 bought cocks, 45 bought layers and cocks, 35 bought broilers and cocks, 10 bought broilers only, 15 bought layers only and bought cocks only, 6 of the customers did not show up.

            i) How many customers bought all the three products?

            ii) How many customers bought exactly two of the products?

3. An investigator was paid sh. 100 per person interviewed about their likes and dislikes  on a drink for lunch. He reported 252 responded positively coffee, 210 liked tea, 300 liked soda, 80 liked tea and soda, 60 liked coffee and soda. 50 liked all three, while 120 people said they not like any drink at all. How much should the investigator be paid coffee and tea 60 people?

Share this post on: