BAM FORM 6 – EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Share this post on:

BASIC PROPERTIES OF LOGARITHMIC FUNCTIONS

If a is any positive real number which in not equal to 1, then a function f (x) defined as f (x) = edu.uptymez.com for x> 0 is called a logarithmic function.

Examples:

i.      edu.uptymez.com

ii.     edu.uptymez.com

iii.     edu.uptymez.com

iv.     edu.uptymez.com

Graphs of logarithmic functions

Draw graph of f (x) = edu.uptymez.com

Solution

x

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

1

3

9

27

81

f (x)

-3

-2

-1

0

1

2

3

4

 

edu.uptymez.com

edu.uptymez.com

Properties of logarithmic functions

i.  It’s graph passes through (1,0)

ii.  It’s domain is ( x : x > 0)

iii.It’s range is (y:y∑IR)

iv.It’s a one to one function

v.  It is the inverse of exponential function

vi.It’s vertical asymptote is at x = 0

vii.No horizontal asymptote

LAWS OF LOGARITHMS:

edu.uptymez.com = edu.uptymez.com + edu.uptymez.com

ii).edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

edu.uptymez.com= n edu.uptymez.com

edu.uptymez.com= n

edu.uptymez.com = 0

edu.uptymez.com = 1

edu.uptymez.com =x , x > 0

CHANGING BASES OF LOGARITHM

Let y = edu.uptymez.com

Change it into base b

Steps:

i.   Express logarithmic function into exponential function

Y = edu.uptymez.com …………. (i)

N = edu.uptymez.com ……………. (ii) 

Introduce logarithm to base b both sides:

N = edu.uptymez.com

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com = y edu.uptymez.com ………….. (iii)

Divide (iii) by edu.uptymez.com ………… (iii)


edu.uptymez.com  y = edu.uptymez.com

Examples

Evaluate the following to four decimal places

1.      edu.uptymez.com

2.      edu.uptymez.com

Solution

1.      edu.uptymez.com

       Let y = edu.uptymez.com

edu.uptymez.com = 5.2

Introducing natural logarithm

In edu.uptymez.com = In 5.2

yln 3 = in 5.2

edu.uptymez.com = edu.uptymez.com = edu.uptymez.com

edu.uptymez.com y = 1.5007

2.      edu.uptymez.com

Let y = edu.uptymez.com

edu.uptymez.com = 0.0372

In edu.uptymez.com = ln 0.0372

edu.uptymez.com = edu.uptymez.com = edu.uptymez.com

edu.uptymez.comy = 4.7488

EXERCISE

     1.  Evaluate the following correct to 4 decimal places

a)     Log 49236

b)     Ln 54.02

c)     edu.uptymez.com

d)     edu.uptymez.com

e)     edu.uptymez.com

f)      edu.uptymez.com

2. Change to base e

a) Log 5.3147

b) Log 0.053

3. Change to base 10

a) ln2.0103

b) ln 47.486

4. Draw graphs of

a) f (x) =  edu.uptymez.com

b) f (x) = edu.uptymez.com

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

a)     Integration of sin x

Recalling;

edu.uptymez.com (edu.uptymez.com) = -kedu.uptymez.com

edu.uptymez.com = edu.uptymez.com edu.uptymez.com

Example

Compute

edu.uptymez.com

Solution

Let u = 5x

Du = 5dx

edu.uptymez.com dx = edu.uptymez.com

edu.uptymez.com edu.uptymez.com = edu.uptymez.com edu.uptymez.com

      = edu.uptymez.com edu.uptymez.com

      =edu.uptymez.com edu.uptymez.com

b)           Integration of edu.uptymez.com

    Recalling
edu.uptymez.com edu.uptymez.com = k edu.uptymez.com

edu.uptymez.com edu.uptymez.com= edu.uptymez.com edu.uptymez.com

c)     Integration of sec2x

Recalling

edu.uptymez.com  edu.uptymez.com = k sec2kx

edu.uptymez.com Êƒsec2kxdx = edu.uptymez.com edu.uptymez.com

Share this post on: