Form 2 Mathematics – EXPONENT AND RADICALS

Share this post on:

 

EXPONENTS:

          Is  the repeated product of real number by itself

e.g. i) 2 x 2 x 2 x 2 = 24

       ii) 6 x 6 x 6 x 6 x 6 = 65

      iii) a x a x a x a x a = a5

LAWS OF EXPONENTS

MULTIPLICATION RULE

Suppose;

4 x 4 x 4 = 43

Then,    43 = power

            4 = base

            3 = exponent

Suppose, 32 x 34 = 3(2+4) = 36

                             32 x 34 = 3 x 3 x 3 x 3 x 3 x 3 = 36

edu.uptymez.com

 
 

Example 1    
Simplify the following

i) 64 x 68 x 66 x 61

ii) y4 x y0 x y3

Solution:

i) 64 x 68 x 66 x 61 = 6 4+8+6+1

                        = 619

ii) y4 x y0 x y3

            Solution:

            Y4 x y0 x y3 = y4+0+3

                        = y7

Example 2                                                                                                                                        
Simplify the following

i) 32 x 54 x 33 x 52

ii) a3 x b3 x b4 x a5 x b2

Solution:

i) 32 x 54 x 33 x 52 = 32+3  x 54+2

                        = 35 x 56

ii) a3 x b3 x b4 x a5 x b2 = a3+5 x b3

                        = a8 x b9

Example 3

If 2Y x 16 x 8Y = 256, find y

Solution:

2y x 24 x 8y = 256

2y x 24 x 8y = 28

2y x 24 x (23)y = 28

y + 4 + 3y = 8

y + 3y = 8 – 4

4y = 4

Y = 1

Exercise 1:

1. Simplify

i) 34 x 43 x 38 x 34 x 42 = 34+8+4 x 43+2 = 316 x 45

ii) a2 x a3 x a4 x b2 x b3 = a2+3+4 x b2+3 = a9 x b5

2. If 125m x 252 = 510 find m

            Solution:

        125m x 252 = 510

53m x 54 = 510

3m + 4 = 10

3m = 10 – 4
        
         3m=6

  m =  2

3. If x7 = 2187. Find x

                        Solution:

                        X7 = 2187

                        X7 = 37

                        X = 3

            QUOTIENT LAW

       edu.uptymez.com edu.uptymez.com= 3 X 3                                                                                                                       

            = 32

Also   edu.uptymez.com    =  34-2 =  32                                                                                                                        

Generally:

edu.uptymez.com                                                                                                                  
Example 1.

Find i)  edu.uptymez.com  =   87-5                                                                                                             

                = 82

         ii) edu.uptymez.com= 52n-n                                                                                                                           

                  = 5n

Example 2.

If   edu.uptymez.com  =  81    find n                                                                                                           

Solution:

      edu.uptymez.com = 81                                                         

    (edu.uptymez.com) = 34                                                                                                                                          

   33n  –  4   =  34

   Equate the exponents

   3n – 4 = 4

    n= edu.uptymez.com

NEGATIVE EXPONENTS

Suppose edu.uptymez.com = 32 – 4 = 3-2                                                                                                           

Also edu.uptymez.com  = edu.uptymez.com

              = edu.uptymez.com

edu.uptymez.com

and Inversely xn = edu.uptymez.com

Example

Find

( i) 2-3 = edu.uptymez.com= edu.uptymez.com

(ii) 9-1/2 = edu.uptymez.com

(iii) edu.uptymez.com = 33 = 27

EXERCISE 2

 1. Given 23n x 16 x 8n = 4096     find n

 2. Given edu.uptymez.com= 56        find y

 3. If 32n+1  –  5 = 76       find n

 4. Given 2y = 0.0625.Find y

edu.uptymez.com 
   6. Find the value of x

(i). 81-1/2 = x           

ii) 2-x = 8

         
 

ZERO EXPONENTS

Suppose,

edu.uptymez.com = edu.uptymez.com = 1                                                                                                                     

edu.uptymez.com    
               30 = 1
edu.uptymez.com                      

Example

Show that 90 = 1

Consider edu.uptymez.com = edu.uptymez.com =  edu.uptymez.com   = 1                                                                                                                            

Also edu.uptymez.com  = 92-2 = 90                                                                                                                                          

            90 = 1 hence shown

Also

      (i)  edu.uptymez.com m =  edu.uptymez.com

      (ii)  (x edu.uptymez.com y)m = xm
edu.uptymez.com ym                                           

Example

(1)Find
             i) (5 x 4)2

Solution:

(5 x 4)2 = 52 x 42

5 x 5 x 4 x 4 = 400

    ii) (edu.uptymez.com)3

     edu.uptymez.com= edu.uptymez.com  =  edu.uptymez.com                                                                        

2. Show that 2-1 = edu.uptymez.com

Solution:

2-1 = edu.uptymez.com 

edu.uptymez.com  = edu.uptymez.com  

 
 

consider LHS

2-1 = edu.uptymez.com  

L H S = R H S

Therefore

2-1 = edu.uptymez.com   hence shown

FRACTIONAL EXPONENTS AND EXPONENTS OF POWERS

EXPONENTS OF POWERS

Consider (54)3=(5x5x5x5)3
                    =(5x5x5x5)x(5x5x5x5)x(5x5x5x5)
                    =5x5x5x5x5x5x5x5x5x5x5x5
                    =512
Similarly (54)3=54×3

edu.uptymez.com
        

edu.uptymez.com

Examples:
1.Simplify (a (x4)5

 (b) (86)3

Solution
(a)   (x4)5=x4×5
              =x20

(b)    (86)3= 86×3
                =818

2.Write 23x 42   as a power of single number
Solution
23x 4 ,but 4=22

       therefore 42=(22)2
                             42=22×2
                         =24
23x 24=23+4
23x 24=27
FRACTIONAL EXPONENT

edu.uptymez.com

Solution

Consider the exponents of powers when edu.uptymez.com is squared, we get
edu.uptymez.com

Let x be positive number and let n be a natural number. Then
edu.uptymez.com

Examples:

(1)    Find  edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

Thus if x is a negative number, and n is an odd number

            edu.uptymez.com


Exercise 2.                                

1.      Show that 2-2  = edu.uptymez.com 

Solution:

Consider LHS

            2-2 = edu.uptymez.com  = edu.uptymez.com 

            2-2 = edu.uptymez.com                              

            LHS = RHS hence shown

2.         Evaluate

            272/3 x 729 1/3   ÷ 243

            Solution:

            27 2/3 x 729 1/3 ÷ 243

            (33)2/3 x (36)1/3 ÷ 35                                                                                                                                                                                                                 

            32 x 32 ÷ 35

            32+2-5

            = 3-1 or edu.uptymez.com 

3.         Find the value of m

            (1/9)2m x (1/3)-m ÷ (1/27)2 = (1/3)-3m

           
 

              Solution:

            (1/32)2m x 1/3-m ÷ (1/33)2 = 1/3-3m

            (1/3)4m x (1/3)-m ÷ (1/3)6 = (1/3)3m

            3-4m x 3-m ÷ 3-6 = 3-3m

            -4m + -m – 6 = -3m

            -5m – 6 = -3m

                        6 = -2m

                        m = -3

4.         Given 2x x 3y = 5184    find x and y

            Solution:

            2x = 5184         2x x 3y = 26 x 3y

            2x = 26              By comparison

            2x = 26              2x = 26

                         X = 6

            3y = 5184         3x = 34

            3y = 34

            y = 4

 The value of x  and   y  is  6 and 4 respectively


RADICALS

-A number involving roots is called a surd or radical.
-Radical is a symbol used to indicate the square root, cube root or nth root of a number.
-The symbol of a radical is  edu.uptymez.com

edu.uptymez.comExample of Radicals    
 (i) edu.uptymez.com               

(ii) edu.uptymez.com

(iii)edu.uptymez.com

PRIME FACTORS

Example 1

Find (i)edu.uptymez.com   by prime factorization 

Solution:

edu.uptymez.com  =  edu.uptymez.com
        = 2×7

        = 14

edu.uptymez.comii)  edu.uptymez.com  by prime factorization          

solution:

edu.uptymez.comedu.uptymez.com

        = 2 x 3

        = 6

iii)        edu.uptymez.com  by prime factorization

solution:

 edu.uptymez.com = edu.uptymez.com

       = 2 edu.uptymez.com

Example 2

If     edu.uptymez.com= 8x        find  x

Solution:

edu.uptymez.comedu.uptymez.com=     8x

     = (23)1/3   = 23x

     = 21 = 23x

              x= edu.uptymez.com

edu.uptymez.com

 
 

Exercise 3

1. Find the following

                           i)   edu.uptymez.com

                                    Solution

                                edu.uptymez.com= edu.uptymez.com

                                         = 2 x 2 x 2 x 2 x 2

                                         = 32

                               edu.uptymez.com  =32

                           ii)    edu.uptymez.com

                                    Solution

                                    edu.uptymez.com  = edu.uptymez.com

                                             =  5     

2. Simplify

a)      edu.uptymez.com      Solution

                           edu.uptymez.com= edu.uptymez.com

                                   = 5 edu.uptymez.com

 
 

    b)        edu.uptymez.com=edu.uptymez.com

                   = 3 x 5 edu.uptymez.com

                   = 15  edu.uptymez.com

 
 

     3.    Find edu.uptymez.com  =   16y   find y

                           edu.uptymez.com=edu.uptymez.com = 24y

                           2 2 = 24y

                           2 = 4y

                           y = edu.uptymez.com

4. Find x if

                         edu.uptymez.com=491/3                       

Solution

                           edu.uptymez.com   = edu.uptymez.com=   491/3

                        3431/x    = 73/x = (72)1/3

                              73/x  = 7 2/3

                                 edu.uptymez.com =  edu.uptymez.com

                                 2x = 9

                                    x =edu.uptymez.com

ii)     edu.uptymez.com= 81x

                           solution

                           edu.uptymez.com=edu.uptymez.com  = 81x                     

                                    = 32 = 34x

                                     = 2 = 4x

                                   x = edu.uptymez.com


OPERATION ON RADICAL

ADDITION

Example1. 

Evaluate

i) edu.uptymez.com+3edu.uptymez.com

Solution:  edu.uptymez.com+  3edu.uptymez.com =(1 + 3) edu.uptymez.com 

                             =4edu.uptymez.com

ii)  edu.uptymez.com+ edu.uptymez.com

Solution

                           =edu.uptymez.com+edu.uptymez.com

                         (22)1/2 (32)1/2
edu.uptymez.com+  (22)1/2 (22)1/2
edu.uptymez.com      

           = (2 x 3) edu.uptymez.com+ (2 x 2) edu.uptymez.com      

                           = 6 edu.uptymez.com+ 4 edu.uptymez.com

                           = 10 edu.uptymez.com

edu.uptymez.com


SUBTRACTION

Example

Evaluate

 i) 3 edu.uptymez.com– 2  edu.uptymez.com

Solution

                = 3 edu.uptymez.com  n-2edu.uptymez.com

=    (3 x 2 x 3 edu.uptymez.comedu.uptymez.com2 x 2 x 2 edu.uptymez.com )

                           = 18 edu.uptymez.comedu.uptymez.com8 edu.uptymez.com

                           = 10 edu.uptymez.com

ii)          edu.uptymez.comedu.uptymez.com  edu.uptymez.com

Solution

      edu.uptymez.comedu.uptymez.comedu.uptymez.com= edu.uptymez.comedu.uptymez.comedu.uptymez.com

                           =(2 x 3) edu.uptymez.comedu.uptymez.com(2 x 2) edu.uptymez.com

                           = 6 edu.uptymez.comedu.uptymez.com4edu.uptymez.com

                           = 2 edu.uptymez.com

edu.uptymez.com

MULTIPLICATION

Example

Find i)    edu.uptymez.com  x edu.uptymez.com 

solution

    edu.uptymez.com  x edu.uptymez.com = edu.uptymez.com

                 = edu.uptymez.com

                 = edu.uptymez.com

                 = 2 x 2 x 2 x 3

                 =  24

ii) 3 edu.uptymez.com x 3edu.uptymez.com

Solution

                           3 edu.uptymez.comx 3 edu.uptymez.com

                           (5 x 3) edu.uptymez.comx (3 x 3) edu.uptymez.com 

                           = 15 edu.uptymez.comx 9 edu.uptymez.com

                           = 135 edu.uptymez.com

edu.uptymez.com

 
 

DIVISION

Example 1

Find i) edu.uptymez.com                                                                                                                                             

Solution: edu.uptymez.com  = edu.uptymez.com          

                    = edu.uptymez.com                                                                                                    

                    =  edu.uptymez.com

                    = edu.uptymez.com
edu.uptymez.com

  EXERCISE 4.

1. Find     2 edu.uptymez.com+ 3 edu.uptymez.com

Solution:      2edu.uptymez.com +3 edu.uptymez.com

                           = (2 x 2 x 3)edu.uptymez.com+ (3 x 2 x 2)edu.uptymez.com 

                           = 12 edu.uptymez.com+12 edu.uptymez.com 

                           = 24 edu.uptymez.com         

(ii )3 edu.uptymez.com

Solution:

3 edu.uptymez.com   =  3  edu.uptymez.com  +  3  edu.uptymez.com

                         = 3 edu.uptymez.com+ 3 edu.uptymez.com

                         =(3 x 2) edu.uptymez.com+(3 x 2 x 3) edu.uptymez.com

                         = 6edu.uptymez.com +12 edu.uptymez.com         

      = 18  edu.uptymez.com

(iii) 6  edu.uptymez.com   edu.uptymez.com 2 edu.uptymez.com

    Solution:

  6  edu.uptymez.com   edu.uptymez.com 2 edu.uptymez.com6 = edu.uptymez.com  edu.uptymez.com2 edu.uptymez.com

                                 = (6 x 2) edu.uptymez.comedu.uptymez.com(2 x 3) edu.uptymez.com

                                  = 12 edu.uptymez.comedu.uptymez.com6edu.uptymez.com  

                                  = 6 edu.uptymez.com  

iv) edu.uptymez.com+ edu.uptymez.com

Solution:

           edu.uptymez.com  + edu.uptymez.com

                   edu.uptymez.com+3 edu.uptymez.com

                           4 edu.uptymez.com

(v)           edu.uptymez.com+ 2250

Solution:              

edu.uptymez.com+ edu.uptymez.com  =  edu.uptymez.com  +2250

                 = 2 edu.uptymez.com + 2250

                 =2 edu.uptymez.com  +   2250

                 =2 edu.uptymez.com+ 2250

2. Simplify

(i)       edu.uptymez.com  x edu.uptymez.com

                           =  edu.uptymez.com

                           =  edu.uptymez.com

                           =  edu.uptymez.com

                           = 24

ii)            edu.uptymez.com edu.uptymez.com

                              edu.uptymez.com (edu.uptymez.com   edu.uptymez.com )

                           = edu.uptymez.com(2 x 3 edu.uptymez.com–  4 edu.uptymez.com )

                           = edu.uptymez.com(6 edu.uptymez.com–  4 edu.uptymez.com )

                           = edu.uptymez.com(2 edu.uptymez.com  )

                           = 4  

(iii)   3 edu.uptymez.com    x 2  edu.uptymez.com   

                           Solution:

                           =  3 edu.uptymez.comx 2 edu.uptymez.com

                           = 3 x 2 x 3  x (2 x 2) edu.uptymez.com

                           = 18 x 4edu.uptymez.com

                           = 72 edu.uptymez.com

(iv)         edu.uptymez.com    (15  edu.uptymez.com )

                           Solution:

edu.uptymez.com    (15  edu.uptymez.com )= 15 edu.uptymez.com

                    = 15 X 3

                    = 45

RATIONALIZATION OF THE DENOMINATOR

          Rationalizing the denominator involves the multiplication of the denominator by a suitable radical resulting in a rational denominator.
The best choice can follow the following rules:-
(i) If a radical is a single term(that is does not involve + or -),the proper choice is the radical itself,that is
edu.uptymez.com
(ii)If the radical involves operations(+ or -),choose a radical with the same format but with one term with the opposite operation.

Examples
edu.uptymez.com
The same technique can be used to rationalize the denominator.


 Example 1

Rationalize i)   edu.uptymez.com

Solution             edu.uptymez.com= edu.uptymez.com  x  edu.uptymez.com

                            = edu.uptymez.com                                               

(ii)        edu.uptymez.com       

               Solution:

               edu.uptymez.com      =    edu.uptymez.com    x  edu.uptymez.com                           

                        =    edu.uptymez.com  

                         =  edu.uptymez.com               

(iii)             edu.uptymez.com

Solution:

   edu.uptymez.com   =  edu.uptymez.comx edu.uptymez.com

                 = edu.uptymez.com

                 = edu.uptymez.com

                  = edu.uptymez.com

                   = edu.uptymez.com

 
 

Example 2:

Rationalize (i) edu.uptymez.com 

Solution:

               edu.uptymez.com   =  edu.uptymez.com  x  edu.uptymez.com 

                    = edu.uptymez.com  

                     = edu.uptymez.com

                    = edu.uptymez.com

                    = edu.uptymez.com

                    = edu.uptymez.com

                      = edu.uptymez.com

 (ii)  Rationalize  edu.uptymez.com 

Solution:

         edu.uptymez.com  =  edu.uptymez.com  x  edu.uptymez.com 

                    = edu.uptymez.com  

                     = edu.uptymez.com

                    = edu.uptymez.com

                    = edu.uptymez.com

                    =  edu.uptymez.com

                    =  edu.uptymez.com

                    =  edu.uptymez.com

EXERCISE 5

1. Evaluate

(i)  (edu.uptymez.com)(edu.uptymez.com)

Solution:
(1) (edu.uptymez.com)(edu.uptymez.com) =  (edu.uptymez.com(edu.uptymez.com)  -4(edu.uptymez.com)

                               =  edu.uptymez.com –  6edu.uptymez.com  –  12edu.uptymez.com  + 12edu.uptymez.com

 
 

(ii)  (edu.uptymez.com)(edu.uptymez.com)

Solution:
(iii) (edu.uptymez.com)(edu.uptymez.com)  =  edu.uptymez.com(edu.uptymez.com)    +  edu.uptymez.com(edu.uptymez.com)   

                            = a  +  edu.uptymez.com  +  edu.uptymez.com  +  b

                            = a  +  b  + 2edu.uptymez.com

     (iv) (edu.uptymez.com)(edu.uptymez.com)

Solution:

                           (edu.uptymez.com)(edu.uptymez.com)  =  edu.uptymez.com(edu.uptymez.com)    +  edu.uptymez.com(edu.uptymez.com)   

                                                          = m + edu.uptymez.com  –  edu.uptymez.com   – n

                                                           = m – n

(v)  (edu.uptymez.com)(edu.uptymez.com

Solution:

(edu.uptymez.com)(edu.uptymez.com)  =  edu.uptymez.com(edu.uptymez.com  –  edu.uptymez.com(edu.uptymez.com)  

                              =  p – edu.uptymez.com  +  edu.uptymez.com   – q

                              = p – q

2. Rationalize

(i)   edu.uptymez.com 

Solution:

         edu.uptymez.com  =  edu.uptymez.com  x  edu.uptymez.com 

                    = edu.uptymez.com  

                     = edu.uptymez.com

                    = edu.uptymez.com

                    = edu.uptymez.com

                    = edu.uptymez.com

 
 

(ii) edu.uptymez.com

Solution:

 edu.uptymez.com

                = edu.uptymez.com 

                = edu.uptymez.com

                = – ( edu.uptymez.com)

 
 

EXERCISE 6

Rationalize the following denominator

(i)edu.uptymez.com

Solution:

  edu.uptymez.com

            = edu.uptymez.com 

            = edu.uptymez.com

            =   edu.uptymez.com

            = edu.uptymez.com

     
 

(ii)edu.uptymez.com

Solution:

  edu.uptymez.com

                = edu.uptymez.com 

                = edu.uptymez.com

                =   edu.uptymez.com

                 = edu.uptymez.com    

 (iii) edu.uptymez.com

Solution:

  edu.uptymez.com

                = edu.uptymez.com 

                = edu.uptymez.com

                =   edu.uptymez.com

                = edu.uptymez.com   

(iv) edu.uptymez.com

Solution:

  edu.uptymez.com

            = edu.uptymez.com 

            = edu.uptymez.com

           =   edu.uptymez.com 

SQUARE ROOT OF A NUMBER

Example

Find( i)  edu.uptymez.com

Solution

    edu.uptymez.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
ii)      edu.uptymez.com
 Solution:
     edu.uptymez.com

(iii)edu.uptymez.com

       Solution:

    edu.uptymez.com

TRANSPOSITION OF FORMULA

A formula expresses a rule which can be used to calculate one quantity where others are given,when one of the given quantity is expressed in terms of the other quantity the process is called transposition of formula.

Example 1

The following are examples of a formula

a. A = edu.uptymez.com

b. v = edu.uptymez.com

c. I = edu.uptymez.com                         

d. A = edu.uptymez.com (a +b)h

e. T = 2edu.uptymez.comredu.uptymez.com


Example 2

The simple interest (I) on the principal (p) for time (T) years. Calculated at the rate of R% per annual is given by formula

I = edu.uptymez.com

Make T the subject of a formula

                           Solution:

                           100 x I = edu.uptymez.com x 100                                                                                                                                                                       

                           edu.uptymez.com = edu.uptymez.com                                                                                                                                

                           edu.uptymez.com = edu.uptymez.com                                                                                                                                   

                           T  =  edu.uptymez.com                                                                                                                                         

                          
 

Example 3.

Given that

 Y = mx + c, make m  the subject

Solution:

                        Y = mx +c

                      edu.uptymez.com  =  edu.uptymez.com                                                                                                           

                         m = edu.uptymez.com                                                                                                                                          

Example 4
Given that p = w edu.uptymez.com                                                                                                                                    
Make a the subject.

Solution:

P = w edu.uptymez.com                                      

Divide by w both sides

                           edu.uptymez.com= edu.uptymez.com edu.uptymez.com

                           edu.uptymez.com = edu.uptymez.com

Multiply by (1 – a) both sides

                            edu.uptymez.com  (1 – a) = (1 edu.uptymez.com a)edu.uptymez.com

                           edu.uptymez.com  (1 – a) = 1 +  a

                           edu.uptymez.com  – edu.uptymez.com = 1 + a                                                                                                                                

                           edu.uptymez.com  –  1 = a +  edu.uptymez.com

                           edu.uptymez.com  –  1 = a(1 +  edu.uptymez.com)

                           Divide by  1  +  edu.uptymez.com both sides

                           edu.uptymez.com= edu.uptymez.com

                           a  =  edu.uptymez.com

Alternatively

         
edu.uptymez.com                 

Example 5

Given that T = 2edu.uptymez.com edu.uptymez.com  write g in terms of other letters

Solution:            

                           T  =  2edu.uptymez.com edu.uptymez.com

Divide by 2edu.uptymez.com both side

                            edu.uptymez.com = edu.uptymez.com edu.uptymez.com                                                                                                                                                                                                                                              

Remove the radical by squares both sides

                           edu.uptymez.com=   edu.uptymez.com2

                           edu.uptymez.com  =  edu.uptymez.com

 
 

Multiply by g both sides

                           edu.uptymez.com  =edu.uptymez.comg

                           edu.uptymez.com =  edu.uptymez.com                                                                                                                     

Multiply by 4edu.uptymez.com2  both sides

                           4edu.uptymez.com2 x   edu.uptymez.com = edu.uptymez.com x 4edu.uptymez.com2                                                                                                                                                                                                                          

                           T2g = 4edu.uptymez.com2edu.uptymez.com

Divide by T2 both sides

                           g  = edu.uptymez.com

Example 6

 If A = p + edu.uptymez.com

(i) Make R as the subject formula

(ii) Make P as the subject formula

Solution:

(i) A = p + edu.uptymez.com

                           = A – P = edu.uptymez.com

Multiply by 100 both sides

                           = edu.uptymez.com= R

                          
 

                           R = edu.uptymez.com

                                
 

 
 

(ii) A = P + edu.uptymez.com

Solution:

       Multiply by 100 both sides         

                           100A = 100P + PRT

                           100A = P(100 + RT)

Divide by 100 + RT both sides

                           edu.uptymez.com = P

 
 

                           P = edu.uptymez.com

Exercise 7

1. If S = edu.uptymez.com at2. Make t the subject of the formula

2. If c = edu.uptymez.com (F – 32) make F  the subject of the formula

Solution:

S = edu.uptymez.comat2

Multiply by 2 both sides

s x 2 = edu.uptymez.comat2 x 2

2s  =  at2

Divide by a both sides

                           edu.uptymez.com = edu.uptymez.com

                           t2 = edu.uptymez.com

Square root both sides

                           edu.uptymez.com = edu.uptymez.com

                           t = edu.uptymez.com

 
 

2. C = edu.uptymez.com(F – 32)

   C = edu.uptymez.comF – edu.uptymez.com

   C + edu.uptymez.com = edu.uptymez.com

Multiply by 9 both sides

     9C + edu.uptymez.com = edu.uptymez.com

Divide by 5 both sides

        F = edu.uptymez.com

More Examples

1. If A = edu.uptymez.com(a + b)

(i) Make h the subject formula

(ii) Make b the subject formula

2.  If edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

(i) Make f the subject formula

(ii) Make u the subject formula

Solution:

1. A = edu.uptymez.com     

                           2A = edu.uptymez.com(a + b)x 2

                           2A = edu.uptymez.com(a + b)

Divide by a + b both sides

                           edu.uptymez.com = edu.uptymez.com

                           h = edu.uptymez.com                                             

(ii) Make b the subject formula.

Solution:

                           A = edu.uptymez.com 

                            2A = edu.uptymez.com(a + b)x 2

                           2A = edu.uptymez.com(a + b)

                            2A = ah + bh

                            2A edu.uptymez.com ah = bh

Divide by h both sides

                           edu.uptymez.com    = b

                           b = edu.uptymez.com

2. edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

Solution:

                           edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

                           edu.uptymez.com = edu.uptymez.com

                           edu.uptymez.com

Divide by u – v both sides

                           f = edu.uptymez.com

ii) Make u the subject formula

                                     edu.uptymez.com = edu.uptymez.com – edu.uptymez.com

Solution:

                           edu.uptymez.com = edu.uptymez.com

Multiply by uv both sides

                           edu.uptymez.com = f(u – v)

                           uv = fu – fv

                           fv = fu – uv

                           fv =u (f – v)

Divide by f – v both sides

                           u = edu.uptymez.com                                             

Exercise 8

1. If T = edu.uptymez.com

(i) Make t the subject formula

(ii) Make g the subject

2. If P = w edu.uptymez.com

(i) Make w as the subject formula

(ii) Make a the subject formula

Solution:

1.      (i)T = edu.uptymez.com

Square both sides

               T2 = edu.uptymez.com

Multiply by 4 both sides

               4T2  =  edu.uptymez.com

               4T2g = 9t

Divide by 9 both sides

t = edu.uptymez.com

                          
 

(ii) Make  g the subject formula

T = edu.uptymez.com

Solution:

               Square both sides

               T2 = edu.uptymez.com

Multiply by 4 both sides

               4T2  =  edu.uptymez.com

 
 

               4T2g = 9t

Divide by 4T2 both sides

               g = edu.uptymez.com

2)( i) Make  w was the subject

Make a the subject

Solution:

                           P = w edu.uptymez.com

                           Pedu.uptymez.com = w(edu.uptymez.com)

Divide by (edu.uptymez.com)  both sides

                           w =P  edu.uptymez.com

ii) Make a the subject formula

 Solution:

                           P = w edu.uptymez.com

                                       
 

Divide by w both sides

                           edu.uptymez.com= edu.uptymez.com edu.uptymez.com

                           edu.uptymez.com = edu.uptymez.com

Multiply by (1 – a) both sides

                            edu.uptymez.com  (1 – a) = (1 edu.uptymez.com a)edu.uptymez.com

                           edu.uptymez.com  (1 – a) = 1 +  a

                           edu.uptymez.com  – edu.uptymez.com = 1 + a                                                                                                                                

                           edu.uptymez.com  –  1 = a +  edu.uptymez.com

                           edu.uptymez.com  –  1 = a(1 +  edu.uptymez.com)

                           Divide by  1  +  edu.uptymez.com both sides

                           edu.uptymez.com= edu.uptymez.com

                           a  =  edu.uptymez.com

 
 

Exercise 9

I. If v = edu.uptymez.com Make R the subject formula                                                                               

Solution: 

                           v = edu.uptymez.com    

Multiply by r + R both sides

                             v (r + R) = 24R

                            vr + Rv = 24 R

                            vr = 24R – Rv

                           vr = R (24 – v)

Divide by 24 – v both sides

2. If m = n edu.uptymez.com

(i) Make x the subject formula

Solution:

                           m = n edu.uptymez.com

Multiply by x + y both sides

                           mx + my = nx – ny

                           my + ny = nx – mx

                           my + ny = x(n – m)

divide by n – m both sides

                           x = edu.uptymez.com

(ii)If T = 2edu.uptymez.com

Make t the subject formula

Solution:

                           T = 2edu.uptymez.com

Square both sides

                           T2 = 4edu.uptymez.com2edu.uptymez.com

Multiply by a both sides

                           T2a = 4edu.uptymez.com2kt

Divide by 4edu.uptymez.com2k both sides

                           t = edu.uptymez.com2edu.uptymez.com

 
 

edu.uptymez.com


ALGEBRA

 

          BINARY OPERATIONS

This is the operation in which the two numbers are combined according to the instruction

The instruction may be explained in words or by symbols e.g. x, *,edu.uptymez.com

          Bi means two

Example1.

Evaluate

(i) 5 x 123

Solution:

 5 x 123 = 5(100 + 20 + 3)

                      = 500 + 100 + 15

                      = 615

(ii) (8 x 89) – (8 x 79)

               = 8(89 – 79)

               = 8(10)

               = 80

Example2

If a * b = 4a – 2b

Find 3 * 4

Solution:

a * b = 4a – 2b

 3 * 4 = 4(3) – 2(4)

           = 12 – 8

3 * 4 = 4

Example 3

If p * q = 5q – p

Find 6 * (3 * 2)

Solution:

 – consider 3 * 2

From p * q = 5q – p

           3 * 2 = 5q – p

               = 10 – 3

               = 7

Then, 6 * 7 = 5q – p

       6 * 7  = 5(7) – p

         35 – 6 = 29

   6 *(3 * 2) = 29

         35 – 6 = 29

   6 * (3 * 2) = 29

BRACKETS IN COMPUTATION

          In expression where there are a mixture of operations, the order of performing the operation is BODMAS

(ii) B = BRACKET

    O = OPEN

    D = DIVISION

    M = MULTIPLICATION

    A = ADDITION

    S = SUBTRACTION

Example

Simplify the following expression

(i) 10x – 4(2y + 3y)

Solution

10x – 4(2y + 3y)

  = 10x – 4(5y)

 = 10x – 20y

IDENTITY

          Is the equation which are true for all values of the variable


Example

Determine which of the following are identity.,

(i) 3y + 1 = 2(y + 1)

Solution:

3y + 1 = 2(y + 1)

Test y = 3

3(3) + 1 = 3(2 + 1)

9 + 1 = 3(3)

10 = 9

Now, LHS ≠ RHS (The equation is not an identity)


(ii) 2(p – 1) + 3 = 2p + 1

Test p = 4

2(4 – 1) + 3 = 2(4) + 1

2(3) + 3 = 8 + 1

6 + 3 = 9

 9 = 9

Now, LHS edu.uptymez.com RHS (The equation is an identity)

 
 

EXERCISE

1. If a * b = 3a3 + 2b

Find (2* 3) * (3 * 2)

Solution:

a* b = 3a3 + 2b

(2 * 3) = 3(2)3 + 2 x 3

             = 3(8) + 6

             = 24 + 6 = 30

Then

(3 * 2) = 3(3)3 + 2(2)

a * b = 30 * 85

30 * 85 = 3(30)3 + 2(85)

       = 3(27000) + 170

       = 81000 + 170

  (2 * 3) * (3 * 2) = 81170

 
 

2. If x * y = 3x + 6y, find 2*(3 * 4)

Solution:

Consider (3 * 4)

From x * y = 3x + 6y

          3 * 4 = 3(3) + 6(4)

                  = 9 + 24

                  =   33

Then 2 * 33 = 3x + 6y

           2 *33 = 3(2) + 6(33)

                = 6 + 198 = 204

          2 * (3 * 4) = 204

 
 

3. If m*n = 4m2 – n

Find y if 3 * y = 34

Solution:

                           = m * n = 4m2 – n

                           = 3 * y = 34

                           = 3 * y = 4(3)2 – y = 34

                           = 4(32) – y = 34

                           = 4(9) – y = 34

                           36 – y = 34

                           y = 2


4. Determine which of the following is identities

2y + 1 = 2(y + 1)

Solution:

2y + 1 = 2(y + 1)

Test y = 7

2(7) + 1 = 2(7 + 1)

14 + 1 = 2(8)

15 = 16

Now, LHS edu.uptymez.com RHS (The equation is not an identity).

 
 

QUADRATIC EXPRESSION
 
Is an expression of the form of  ax+ bx + c.

          Is an expression whose highest power is 2.

          General  form of quadratic expression is ax2 + bx + c where a, b, and c are real numbers and a ≠ 0.

Note

 (i) a≠ o

bx – middle term

y = mx2 + cx – linear equation

y = ax + b

y= mx2 + 2 – quadratic equation

y = mx2 + c

 
 

example

(i) 2x2 + 3x + 6 (a =2, b =3, c =6)

ii) 3x2 – x (a =3, b = -1, c = 0)

iii) 1/2x2 – 1/yx – 5 (a = ½, b = -1/4, c = -5)

iv) –x2 – x – 1  (a = -1, b = -1, c = -1)

v) x2 – 4 (a = 1, b = 0, c = -4)

vi) x (a = 1, b = 0, c = 0)

 
 

Example

If a rectangle has length 2x + x and width x – 5 find its area

           Solution:

 
 

edu.uptymez.com

From, A = l x w    where  A is area, l is length and w is width

= (2x + 3) (x – 5)                                          Alternative way:

= 2x(x – 5) + 3(x – 5)                                   (2x + 3) X (x-5)

= 2x2 – 10x + 3x – 15                                   2x2 -10N + 3x-15

   2x2 – 7x – 15unit  area                              2x2 – 7x-15  Unit area              

                                                                                                            

EXPANSION

Example 1

Expand i) (x + 2) (x + 1)

              Solution:

(x + 2) (x + 1)                                 Alternative way:

x(x + 1) + 2(x + 1)                            (x+2) (x+1)

= x2 + x + 2x + 2                               x2 +x+2x+2

= x2 + 3x + 2                                        x2+3x+2

 
 

ii) (x – 3) (x + 4)                            Alternative way:

x (x + 4) – 3(x + 4)                           (x-3) (x+4)

x2 + 4x – 3x – 12                              x2+4x-3x-12

= x2 + x – 12                                        x2+x-12

 
 

iii) (3x + 5) (x – 4)                            Alternative way:

3x(x -4) + 5 (x – 4)                            (3x+5) (x-4)

= 3x2 – 12x + 5x – 20                       3x2-12x+5x-20

= 3x2 – 7 – 20                                        3x2-7x-20

 
 

iv) (2x + 5) (2x – 5)                            Alternative way:                     

2x (2x – 5) + 5(2x – 5)                         (2x+5) (2x-5)

4x2 – 10x + 10x – 25                           4x2-10x+10x-25

= 4x2 – 25                                                 4x2-25

 
 

EXERCISE

I. Expand the following

(x + 3) (x + 3)                                      Alternative way:

x(x + 3) + 3x + 9                                   (x+3) (x+3)

= x2 + 3x + 3x + 9                                x2+3x +3x+9

= x2 + 6x + 9                                            x2+6x+9

 
 

iii) (2x – 1) (2x – 1)

                Solution:

2x(2x – 1) – 1 (2x – 1)
 =(2x-1) (  2x-1)

= 4x2 – 2x – 2x + 1

= 4x2 – 4x +1

 
 

iii) (3x – 2) (x +2)

           Solution:

3x(x + 2) – 2(x + 2)                             Alternative way:

= 3×2 + 6x – 2x – 4                                (3x-2) (x+2)

= 3x2 + 4x – 4                                        3x2+6x-2x-4

                                                                 3x2+4x-4

2) Expand the following

i) (a + b) (a + b)

            Solution:   

a(a + b) + b(a + b)
=(a+b) (a+b)

= a2 + ab + ba + b2

= a2 + 2ab + b2

 
 

ii) (a + b) (a –b)

                Solution:

a(a + b) – b(a + b)
= (a+b) (a-b)

= a2 – ab + ab -b2

= a2  – b2

 
 

iii) (p + q) (p – q)

            Solution:

p(p – q) + q(p – q)                                   Alternative way:

= p2 – pq + qp – q2                                      (p+q)    (p-q)

= p2 – q2                                                 p2-pq+pq- q2  
                                                                   p2 – q2    
 

 
 

iv) (m – n) (m + n)

               Solution:

m(m + n) – n(m + n)                           Alternative way:

= m2 +mn – nm + n2                            (m-n) (m+n)

= m2 – n2                                          m2 + mn -nm – n2
                                                                 m2 – n2

 
 

v) (x – y) (x – y)

          Solution:

x(x – y) – y(x – y)
= (x-y)     (x-y)               

= x2 – xy – yx + y2              

= x2 – 2xy + y2

FACTORIZATION

          Is the process of writing an expression as a product of its factors

 
 

(i) BY SPLITTING THE MIDDLE TERM

– In quadratic form

 ax2 + bx + c

Sum = b

Product =ac

 
 

Example     i) x2 + 6x + 8

                            Solution:
Find the number such that

i) Sum = 6; coefficient of x

ii) Product = 1 x 8; Product of coefficient of x2 and constant term

= 8 = 1 x 8

= 2 x 4

Now

x2 + 2x + 4x + 8

(x2 + 2x) + (4x + 8)

x (x + 2) + 4(x + 2)

= (x + 4) + (x + 2)

 
 

ii) 2x2 + 7x + 6

                Solution:

Sum  = 7

Product, = 2 x 6 = 12

          12 = 1 x 12

      = 2 x 6

      = 3 x 4

Now,

2x2 + 3x + 4x + 6

(2x2 + 3x) + (4x + 6)

= x (2x + 3) + 2(2x + 3)

= (x + 2) (2x + 3x)

 
 

iii) 3x2 – 10x + 3

                 Solution:

Sum = -10

Product = 3 x 3 = 9

9 = 1 x 9

  = 3 x 3

Now,

3x2 – x – 9x + 3

(3x2 – x) – (9x + 3)

x(3x – 1) – 3(3x + 1)

(x – 3) (3x – 1)

 
 

iv) x2 + 3x – 10

              Solution:

Sum = 3

Product = 1 x -10 = -10

               = -2 x 5

Now,

X2 – 2x + 5x – 10

(x2 – 2x) + (5x – 10)

x (x – 2) + 5(x – 2)

= (x + 5) (x – 2)

 
 

                   EXERCISE

i) Factorize the following

4x2 + 20x + 25

              Solution:

 Sum = 20

Product = 4 x 25 = 100

100 = 1 x 100

        = 2 x 50

         = 4 x 25

         = 5 x 20

          = 10 x 10

= 4x2 + 10x + 10x + 25

(4x2 + 10x) + (10x + 25)

2x(2x + 5) + 5 (2x + 5)

= (2x + 5) (2x + 5)

 
 

ii) 2x2 + 5x – 3

            Solution:

Sum = 5

Product =  -6

number = (- 1,6)

= 2x2 – x + 6x – 3
= 2x2 + 5x – 3

(2x2 – x) + (6x – 3)

x (2x – 1) + 3(2x – 1)

= (x + 3) (2x – 1)

 
 

iii) x2 – 11x + 24

Solution:

Sum = -11

Product = 1 x 24 = 24

24 = 1 x 24

     = 1 x 24

     = 2 x 12

     = 3 x 8 = -3 x -8

     = 4 x 6

x2 – 3x – 8x + 24

(x2 – 3x) – (8x – 24)

x(x – 3) – 8(x – 3)

= (x – 8) (x – 3)

 
 

iv) x2 – 3x – 28

Solution:

Sum = -3

Product = 1 x -28 = -28

       28 = 1 x 28

            = 2 x 14

            = 4 xedu.uptymez.com 7

            = x2 + 4x – 7x – 28

(x2 + 4x) – (7 + 28)

x(x +4) – 7(x +4)

(x – 7) (x + 4)

 
 

BY INSPECTION

Example

Factorize

i) x2 + 7x + 10

Solution:

(x + 2) (x + 5)

 
 

ii) x2 + 3x – 40

Solution:

(x – 5) (x + 8)

 
 

iii) x2 + 6x + 7

Solution:

Has no factor.

 
 

DIFFERENT OF TWO SQUARE

edu.uptymez.comConsider a square with length ”a” unit

edu.uptymez.com

 1st case, At = (a x a) – (b x b)

                              = a2 – b2

             2nd case

             A1 = a (a – b) …….(i)

             A2 = b (a – b)…….(ii)

Now, 1st case = 2nd case

AT = A1 + A2

a2 – b2 = a (a – b) + b(a – b)

              = (a + b) (a – b)

Generally    a2 – b2 = (a + b) (a – b)

Example 1

Factorize i) x2 – 9

                 ii) 4x2 – 25

                 iii) 2x2 – 3

Solution:

i) x2 – 9 = x2 – 32

               = (x + 3) (x – 3)

ii) 4x2 – 25 = 22x2 – 52

                     = (2x)2 – 52

iii)2x2 – 3 =(edu.uptymez.com)2 x2 – (  edu.uptymez.com)2

      = (edu.uptymez.com x)2 – (edu.uptymez.com)2

   =(edu.uptymez.com x + edu.uptymez.com) (edu.uptymez.com x – edu.uptymez.com)

 
 

EXERCISE

I. Factorize by inspection

i) x2 + 11x – 26

Solution:

(x + 13) (x -2)

 
 

ii) x2 – 3x – 28

Solution:

(x – 7) (x + 4)

 
 

2. Factorization by difference of two square

i) x2 – 1

Solution:

X2 – 1 =  (edu.uptymez.com )2 – (edu.uptymez.com)2

            = (x)2 –  1

= (x + 1) (x – 1)

ii) 64 – x2

Solution:

64 – x2 = 82 – x2

= (8 + x) (8 – x)

iii) (x + 1)2 – 169

solution:

(x + 1)2 – 169

(x + 1)2 – 132

= (x + 1 – 13) (x + 1 + 13)

= (x – 12) (x + 14)

 
 

iv) 3x2 – 5

Solution:

3x2 – 5 = (edu.uptymez.com x)2 – (edu.uptymez.com)2

= (edu.uptymez.com x – edu.uptymez.com) (edu.uptymez.com x + edu.uptymez.com)

 
 

APPLICATION OF DIFFERENCES OF TWO SQUARE

Example 1

Find the value of i) 7552 – 2452

                        ii) 50012 – 49992

Solution:

i) 7552 – 7452

From a2 – b2 = (a + b) (a – b)

7552 – 2452 = (755 – 245)(755 + 245)

                = (510) (1000)

                = 510, 000

 
 

ii) 50012 – 49992

     50012 – 49992 = (5001 – 4999) (5001 + 4999)
     50012 – 49992 = (5001 + 4999)

                               = (2) (10000)

                               = 20,000

PERFECT SQUARE

Note

(a + b)2 = (a + b) (a + b)

(a – b)2 = (a – b) (a – b)

Example

Factorize i) x2 + 6x + 9

Sum = 6

Product = 9 x 1 = 9

               = 9 = 1 x9

               = 3 x 3

x2 + 3x + 3x + 9

(x2 + 3x) + (3x + 9)

= x (x + 3)+3 (x + 3)

= (x + 3)2

 
 

ii) 2x2 + 8x + 8

Sum = 8

Product = 2 x 8 = 16

                  16 = 1 x 16

                       = 2 x 8

                       = 4 x4

2x2 + 4x + 4x + 8

(2x2 + 4x)+ (4x + 8)

2x(x + 2) +4(x + 2)

(x +2) (2x + 4)

For a perfect square ax2 + bx + c

                           Then 4ac = b2

Example 1

If ax2 + 8x + 4 is a perfect square find the value of a

Solution:

ax2 + 8x + 4

a = a, b = 8, c = 4

From,

4ac = b2

4(a) (4) = 82

 16a/16 = 64/16

         a = 4

Example2

If 2x2 + kx + 18 is a perfect square find k.

Solution:

 2x2 + kx + 18

a = 2, b = kx, c = 18

from

4ac = b2

4(2)(18) = k2

From

4ac = b2

4(2) (18) = k2

      edu.uptymez.com = edu.uptymez.com

           K = edu.uptymez.com

           K = 12

          Other example

Factorize i) 2x2 – 12x

Solution:

2x(x – 6)

ii) x2 + 10x

= x(x + 10)

 
 

Share this post on: