Form 2 Mathematics – LOGARITHMS

Share this post on:

LOGARITHMS

STANDARD NOTATIONS
Standard notation form is written in form of A x 10n whereby 1≤ A< 10 and n is any integers

Example

Write the following in standard form
(i)  2380

   Solution:
   2380 = 2.38 x 103

(ii)  97

     Solution:
     97 = 9.7 x 101

(iii) 100000

       Solution:
        100000 = 1 x 105

(iv)  8
        Solution:
          8 = 8 x 100

Example


Write the following in standard form

(i) 0.00056
 = 5.6 x 10-4

(ii) 0.001
 = 1 x 10-3

(iii) 0.34
 = 3.4 x 10 -1

(iv) 2. 0001
 = 2. 0001 x 100

EXERCISE 1:

i). Write the following in standard form

17000
     = 1.7 x 104

ii) 0.00998
      = 9.98 x 10-3

iii). Write in standard form

 0.000625
     = 6.25 x 10-4

8/300 correct to four significant figure

8/300 =  0.02666

Now 2.667 x 10-2

2.667 x 10-2

iv) If a = br and  a =  8.4 x 104 , b = 7.0 x 102  Find  r.

solution:

a = 84 000

b = 700

Now

br = a

(700) (r) = 84000

edu.uptymez.com  
r=120
r = 1.2 x 102

DEFINITION OF LOGARITHMS

Consider

3 x 3 x 3 x 3 then

3 x 3 x 3 x 3 = 34 =  81, the number 3 is the base ,and 4 is the exponent.

Now we say;

Logarithm of 81 to base 3 is equal to exponent 4

 log381 = 4
In short bn = a

logba= n

Example 1.
Write the following in logarithmic form

i) a5 = 10
   loga10 = 5

ii)10-3 = 0.001
    10-3= 0.001
    log100.001 =  -3

iii) 2-1 = ½
  log21⁄2  = -1

iv) 3 = 91/2
log39 = 1⁄2

Example  2

Write the following in exponential form
 (i) log3729= 6
        36 = 729

 (ii) log31⁄3 = -1
        3-1 = 1/3

 (iii) log100.01 = -2
       10-2 = 0.01

  (iv)1⁄2 = log42
        4(1/2) = 2

Example 3

If log100.01= y. Find y

Solution:

log100.01 = y

10y = 0.01

10y =1×10-2

10y=100×10-2

10y=10-2

y= -2
 

If log10x=-3 find x

Solution:
log10x = -3

10-3 = x

x=0.001

EXERCISE  1
1. Write in standard form  
                    i) 405.06
                   ii) 0.912
Solution:
i) 405.06 = 4.0506 x 102
ii) 0.912 = 9.12 x 10-1

2. Write in logarithimic form
i)5-1 = 1⁄5
ii) 0.0001 =1 × 10-4

Solution:
i) 5-1 = 1⁄5
 log5(1⁄5) = -1

ii) 0.0001 = 10-4
log100.0001 = -4

3. Write in exponential form
i)  logax = n
ii)-3 =  log100.001
iii) log2(1⁄64) = -6

Solution:
i)  logax = n
 an = x

ii)-3 =log100.001
    10-3 = 0.001

iii) log2(1⁄64) = -6
     2-6 = 1⁄64 

4. To solve for x
i)  log6x= 4
     64 = x
     x = 1296

ii) x = log36561
    3x = 6561
    x = 8

iii) logx10= 1
 x1 = 10
 x = 10

 iv) log42 =  x
     4x = 2
     22x = 21    
     2x= 1
     x = 1⁄2

BASE TEN LOGARITHM
– Is an logarithm of a number to base 10. Also known as common logarithm
  example    i) log105= log5
                  ii) log1075 =  log75

                         iii) log10p = log p


SPECIAL CASES
(1).  logaa = x
ax = a1
x = 1

edu.uptymez.com


Generally logaa  = 1

Example
i) log66  = 1
ii) log10  = 1

(2) loga(an) = x
            ax = an
            x = n

edu.uptymez.com

Example   i) log4(45) = 5
               ii) log10-3  = -3

Example 1


If log55 = log2m  Find m

Solution:


log55 = log2m  


But log55 = 1

1 = log2m


21 = m1


m = 2

Example 2


Given log525 + log4x = 6, Find x


Solution:


log525 + log4x = 6

log5(52)+ log4x = 6

2log55+log4x = 6

2 +log4x = 6

log4x  = 4
       x= 44

       x = 256

EXERCISE 2.

 Evaluate

 i) log24096 
                  
ii) log0.0001

solution

i) log24096      
              
let x = log24096
2x = 4096

2x = 212

x = 12

log24096=12

ii) log0.0001

Solution:

Let x = log0.0001
10x = 1/10000
10x = 1/(104)
10x = 10-4
x = -4

log0001=1

2) If logk81 – log232= -1

Solution:
  logk81 – 5log22 =  -1
 logk81 = -1 + 5
 logk81= 4
 k4 = 81
 k4 = 34
 k = 3

3. Given log6y = log7343. Find y

Solution:

log6y = 3log77

log6y  = 3

63 = y

216 = y

y = 216

4) Solve for m

i) log81  = m
8m = 1         since aº=1 then
               
                   8m=80

                   m=0

ii) log5m + log327 = 8
log5m + log333= 8
log5m +3 = 8
log5m = 5
      m= 55

     m = 3125

LAWS OF LOGARITHMS

MULTIPLICATION LAW

 Suppose, logax = p and logay = q then
logax = p….(i)
logay = q….(ii)
Write equation (i) and (ii) into exponential form.
ap = x………(iii)
aq = y……..(iv)
Multiply equation (iii) and (iv)

xy = ap x aq
xy = a(p + q) …….(v)

 In equation (v) apply loga both sides
loga (xy) = logaa(p + q)

logaxy = (p + q)  logaa
logaxy = p + q
But p = logax
       q = logay
edu.uptymez.com

Example

 i) log6(8 ×12) = log88 + log612
ii)  log49 +log43 = log4(9 ×3)

Example 1

i) Find x , If log3x = log315 + log312

Solution:

 log3x = log315 + log312                 
  log3x  =  log3( 15 ×12)
  log3x  =   log3180 
 x = 180

Example 2

Given   log520   =   log54  +  log5x .Find x

Solution:

log520 =  log54  +  log5x

log520    = log5(4 × x)   
log520 = log54x
 20 = 4x
        
   X = 5

Example 3

If log80.01= log8(m ×2). Find m

solution

 log80.01 = log8( 2m)

    0.01 = 2m

          m =  0.01/2

          m = 0.005

QUOTIENT LAW

Suppose, logax= p and
logay = q then
logax = p……..(i)
logay = q……..(ii) 

Write equation (i)  and  (ii) into exponent form
ap = x……(iii)
aq = y…..(iv)

Divide equation  (iii)  and  (iv)
x/y = ap/aq

x/y = a(p – q) …..  (v)

In equation (v) apply log a both sides
loga(x/y)   = logaa(p-q)          
loga(x/y) = (p – q)  logaa
But logaa = 1
loga(x/y) = p – q ,where p= logax  and q=logay

edu.uptymez.com

i) log6( 8/12) = log68  – log612
ii)  log49   –  log43  = log4(9/3)

Example

If    log220    =  log2x  – log28.Find x

Solution:

log220    =  log2x  – log28
log220     = log2(x/8)
Now, 20 = x/8
            X = 20 x 8
            X = 160

EXERCISE 3
1. Evaluate

i) log63 + log62

Solution:

= log63 + log62

= log6( 2 ×3)= log66
= 1

ii) log 40 + log 5 + log40

Solution:

= log1040 + log105  + log1040
= log10( 40 ×5 ×40)
=log108000

iii)  log1025 –  log109  + log10360

Solution:

log1025 –  log109  + log10360
log10( (25 ×360 )/9)             
              =log101000
             =log1010
            =3log1010
            =3

2. If log5a⁡x =  log5a⁡9  + log5a⁡12. Find x

Solution:

log5a⁡x = log5a⁡9  + log5⁡a12
 log5a⁡x =  log5a⁡( 9 ×12)
log5a⁡x = log5a⁡108
      x = 108

3. If log2a⁡5  = log2ay  + log2a⁡0.001.Find Y

Solution:

i) log2a⁡5 = log2a⁡(y×0.001)

5⁡ = ⁡0.001y    
  
y= 5/0.001

  Y = 5000

ii)Find y if log6⁡100  = log6⁡5  + log6⁡80 – log6⁡y

Solution:

log6⁡100  = log6 (5 × 80)/ y

     100 = ⁡400/y

      y   = 4

4. If   log a  = 0.9031, log b = 1.0792 and log c = 0.6990. Find log⁡ ac⁄b
 
Solution

log ⁡ac⁄b =log10⁡ a  + log10⁡c  – log10⁡b
           =0.9031   + 1.0792  -0.6990

       log ⁡ac⁄b = 1.2833

LOGARITHM OF POWER

If  loga⁡x   = p then
X = ap
Multiply by power in both sides xn = anp

Apply log a both sides
logaxn = logaanp
logaxn = np

But p = logax

logaxn= nlogax
edu.uptymez.com

Example(1)

Evaluate

 i) log2 (128)6
ii) log7 (343)8

Solution
i) log2 (128)6 = 6log2 27
                
                      = (7 x 6) log22

                      = 42 x 1

                      = 42

ii) Log7 (343)8
Solution:
      log7 3438 = 8log7 343
                   = 8log7 73
                    = (8 x 3) log7 7
                   = 24

Example (2)

If log5 625y = log3 7292 .Find y.

Solution:
log5 625y = log3 7292
log5 625y = 2log3 729
ylog5 54 = 2log3 36
(y x 4) log5 5 = (2 x 6) log3 3
 4y log5 5 = 12 log3 3
          4y = 12

         y=2/4

         y = 3

LOGARITHM OF ROOTS

 edu.uptymez.com

Example (1)

edu.uptymez.com

edu.uptymez.com

EXERCISE 4:

1. Evaluate

i) log 60 + log 40 – log 0.3
ii) log √(1⁄27)

Solution:
i) Log60 + log40 – log0.3
 log10 60 + log10 40 – log10 0.3
log10 (60 x 40/0.3) = log10 (2400/0.3)
                          = log10 8000
                           =3.9031

edu.uptymez.com
edu.uptymez.com

3. Given log2 x = 1 – log2 3.   Find x
Solution:

log2 x = 1 – log2 3
log2 x = log2 2-log2 3
log2 x = log2 (2/3)
x =2/3

4. Simplify

i) 2log5 + log36 – log9
ii)  (log⁡8-log⁡4)/(log 4-log2)           
 
Solution:

i) 2log5 + log36 – log9

 log52 + log36 – log9

 log1025 + log1036 – log109

= log10 (25 x 36)/9   
        
= log10 (900/9)

= log10100

=log10 102

=2 log10 10

=2

ii) (log⁡8-log⁡4)/(log 4-log2)

Solution:

(log⁡8-log⁡4)/(log 4-log2)
  
=  log10 (8/4) ÷log10 (4/2)

= log102 ÷ log102
= 1


 

Share this post on: