Form 2 Mathematics – PYTHAGORAS THEOREM

Share this post on:

PYTHAGORAS THEOREM
Pythagoras theorem is used to solve problems involving right angled triangles.

Statement:

In a right- angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides.

     edu.uptymez.com
Shown below

     edu.uptymez.com

Required to prove: c2 = a2 + b2

Construction : Joining L and N. Considering the trapezium PQLN:

Area of the trapezium

but area of trapezium  = area Δ PKN + area Δ KQL + area Δ KLN

edu.uptymez.com (a+b) (a+b) = edu.uptymez.com  ab + edu.uptymez.com ( c  x  c)

edu.uptymez.com  (a+b) (a+b) =  ab + edu.uptymez.com  c2                           

edu.uptymez.com  [a2 + 2ab + b2] = ab + edu.uptymez.com  c2

edu.uptymez.com  a2 + ab + edu.uptymez.com  b2 = ab + edu.uptymez.com  c2

 

 a2 + b2 = c2

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com  a2 + edu.uptymez.com  b2 = edu.uptymez.com c2                           

 
 

                                     Pythagoras theorem

 Examples

1.The side s of a triangle containing the right angle have length of 5cm and 12cm.

Find the length of the hypotenuse

Solution

C2= a2 +b2

C2 = 52 + 122

C2 = 25+ 144

C2 = 169

C = edu.uptymez.com 

C= 13cm

 The length of the hypotenuse = 13cm.

2.  In figure below if AC =17cm, BC = 8cm, and CD = 12cm find AD

     edu.uptymez.com

Solution:
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

EXERCISE

1.   Calculate the unknown side of the following triangle

     edu.uptymez.com

SOLUTION:
172 = 152 + b2

b2 = 172 – 152

b2 = 289 – 225

b = edu.uptymez.com

b = 8cm

r2 = 82+ 82
   
r2 = 64 +64

edu.uptymez.com

 r =11.31cm

2.   Given triangle ABC, where B = 900.Find the lengths of the sides which are not given
edu.uptymez.com

 
 

                          edu.uptymez.com

           edu.uptymez.com     

edu.uptymez.com

 
                   edu.uptymez.com 

               edu.uptymez.com

edu.uptymez.com

                           
 

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

   
 

3.   A man travels 15km due north and then 8km due west. How far is he from his starting point?

Solution:

    edu.uptymez.com

                X2 = 152 +82

                X2 = 225 +64

                X = edu.uptymez.com 

                X = 17km

                He is 17km from his starting point

edu.uptymez.com

 
         edu.uptymez.com
                     

                  edu.uptymez.com

    edu.uptymez.com        
edu.uptymez.com
edu.uptymez.com
    Find the area of the triangle and the length of the perpendicular from C to B.

  Solution:

edu.uptymez.com
     

edu.uptymez.com

edu.uptymez.com


 

Share this post on: