Form 2 Mathematics – TRIGONOMETRY

Share this post on:

Trigonometric ratio

Introduction: TRI – is the Greek word which means three.

-Trigonometry is the branch of mathematics which deals with measurement.

-A Trigonometric ratio consists of three parts that is – Hypotenuse, Adjacent and opposite.

Consider the diagram below which is the right angled triangle
 edu.uptymez.com     
edu.uptymez.com
                                                                                                                 

 
 

For example
   edu.uptymez.com

 Assume angle B

      edu.uptymez.com

For trigonometrical ratios we have sine, cosine and tangents which used to find the length of any side and angles.

edu.uptymez.comRefer to the right angled triangle below:-         

       edu.uptymez.com

For sine(sin)
edu.uptymez.com

edu.uptymez.com                                   

Sin  = edu.uptymez.com

                               
 

For cosine (cos)

Consider the diagram

edu.uptymez.com

        edu.uptymez.com


edu.uptymez.com

Cos  = edu.uptymez.com

For Tangents (tan)                                                                                                                

     edu.uptymez.com

Tan  = edu.uptymez.com  where

AC is called Adjacent

BC is called Opposite

Tan  = edu.uptymez.com 

In summary

SO

TO

CA

H

A

H

edu.uptymez.com

 
 

Where: S – sine, T – tan, C – cos, O –opposite, A – adjacent, H – opposite

Example 1.

edu.uptymez.com

Find a) Sin Â

        b) Cos  and (c) tan Â

Solution:

edu.uptymez.com
      edu.uptymez.com

a) Sin  = edu.uptymez.com

    Sin  = edu.uptymez.com

    Sin  = edu.uptymez.com

b) Cos  = edu.uptymez.com

    Cos  = edu.uptymez.com

    Cos  = edu.uptymez.com

c) Tan  = edu.uptymez.com

   Tan  = edu.uptymez.com

   Tan  = edu.uptymez.com

Example 2

Find the value of sin Â, cos  and tan Â

      edu.uptymez.com                                                

edu.uptymez.comSolution:
      edu.uptymez.com

Where Opposite = 4, Adjacent = 3, Hypotenuse =?

Use Pythagoras theorem

a2 + b2 = c2

42 + 32 = c2

     edu.uptymez.com= edu.uptymez.com

                        c = 5

Sin  = edu.uptymez.com =  edu.uptymez.com

Cos  = edu.uptymez.com = edu.uptymez.com

Tan  = edu.uptymez.com  =  edu.uptymez.com

Example 3

i) If the sin  = edu.uptymez.comfind the value of

(a) Cos  , (b) Tan Â

edu.uptymez.com

Solution:

 given sin  = edu.uptymez.com  where sin  =edu.uptymez.com 
  
      edu.uptymez.com

By using Pythagoras theorem

a2 + b2 = c2

(45)2 + b2 = (53)2

2025 + b2 = 2809

b2 = 2809 – 2055     

edu.uptymez.com  =   edu.uptymez.com 

b = 28

a) Cos  = edu.uptymez.com   = edu.uptymez.com

b) Tan  = edu.uptymez.com  =  edu.uptymez.com

Solution:

   edu.uptymez.com
         edu.uptymez.com

      edu.uptymez.com

from Pythagoras theorem                 

a2 + b2 = c2

m2 + n2 = c2

(m + n)2 – 2mn = c2

edu.uptymez.com= edu.uptymez.com

      c = edu.uptymez.com  

a. Sin B= edu.uptymez.com= edu.uptymez.com

b. Cos  = edu.uptymez.com= edu.uptymez.com


Example 4

If cos y = edu.uptymez.com  Find (a) sin y (b)tan y

Solution:

Given that Cos y = edu.uptymez.com  

But cos y = edu.uptymez.com          

      edu.uptymez.com

a2 + b2 = c2

a2 + (21)2 = (29)2

a2 + 441 = 841

a2 = 841 – 441

edu.uptymez.com   =  edu.uptymez.com

a = 20

a. Sin y = edu.uptymez.com= edu.uptymez.com

b. Tan y = edu.uptymez.com = edu.uptymez.com

 
 

Special angles

The trigonometrical ratios has the special angles which are 0°, 30°,45°, 60°, and 90°.The special angles does not need table or calculator to find their ratios.

To prove the value of trigonometric ratio for special angles

edu.uptymez.comConsider the diagram below    

    edu.uptymez.com                                                                                                                                

Note:

 when the point B move toward the point c the angle of A = 0° and the length of AB = AC and BC = 0

Sin 0° = edu.uptymez.com

Sin = edu.uptymez.com

Sin 0° = edu.uptymez.com

Sin 0°= 0

Tan 0°= edu.uptymez.com

Tan 0° = edu.uptymez.com

Tan 0°= 0

Cos 0° = edu.uptymez.com

Cos 0° = edu.uptymez.com

But AC = AB

Cos 0°= 1

edu.uptymez.comConsider the diagram  

    edu.uptymez.com                                                                                                                                             

If the point A moves towards point C the difference from A to C becomes zero. The angle between A and C become 90°

     edu.uptymez.com

Sin 90° = edu.uptymez.com  but opp = hyp

                               
 

Sin 90° = 1

Cos 90° = edu.uptymez.com

Cos 90° = edu.uptymez.com

Cos 90° = 0

Tan 90° = edu.uptymez.com

Tan 90° = edu.uptymez.com

Tan 90° = edu.uptymez.com (undefined)

Example

edu.uptymez.comFind sin 45°, cos 45, and Tan 45° consider a right angled triangle ABC with 1 unit in length


     edu.uptymez.com

The length Of AC = CB = 1 unit But use Pythagoras theorem to find the length AB.

From Pythagoras theorem

a2 + b2 = c2

12 + 12 = c2

edu.uptymez.com = edu.uptymez.com

c=edu.uptymez.com

Sin 45 ° = edu.uptymez.com

Sin 45° = edu.uptymez.com

Rationalize the denominator

Sine 45° = edu.uptymez.com                                                                                                                   

               = edu.uptymez.com  = edu.uptymez.com

Cos 45° = edu.uptymez.com

Cos 45° = edu.uptymez.com

Cos 45° = edu.uptymez.com                                                                                                                    

      = edu.uptymez.com  = edu.uptymez.com

Tan 45° = edu.uptymez.com

Tan 45° = edu.uptymez.com

Tan 45°= 1

Find Sin, Cos and Tan of (30° and 60Ëš)

    
 

Consider the equilateral triangle ΔABC        

edu.uptymez.com         edu.uptymez.com

             edu.uptymez.com                                                                                                                                                                                                                      

Use Pythagoras theorem

a2 + b2 = c2

12 + b2 = 22

b2 = 22 –  12

b2 = 4 – 1

edu.uptymez.com =    edu.uptymez.com

b =    edu.uptymez.com

edu.uptymez.com
      edu.uptymez.com

Sin 60 = edu.uptymez.com

Sin 60° =     edu.uptymez.com

Sin 60° =     edu.uptymez.com

Cos 60 = edu.uptymez.com

Cos 60° = edu.uptymez.com or 0.5

Cos 60° = edu.uptymez.com or 0.5

Tan 60° = edu.uptymez.com

Tan 60° = edu.uptymez.com

Tan 60° = edu.uptymez.com

 
 

Sin 30° = edu.uptymez.com

Sin 30° = edu.uptymez.com or 0.5

Tan 30° = edu.uptymez.com

                               
 

Tan 30°= edu.uptymez.com

= edu.uptymez.com

Tan 30° =  edu.uptymez.com

Cos 30° = edu.uptymez.com

Cos 30° =    edu.uptymez.com

In summary:

           
       edu.uptymez.com
                

Sin 0 =   edu.uptymez.com

Sin 0 = edu.uptymez.com

Sin 0 = 0

Example 1.

Find the value of 4 sin 45° + 2 tan 60 without using table

Solution:

4 sin 45° + 2 Tan 60°

= 4 (edu.uptymez.com) + 2edu.uptymez.com)

= 2edu.uptymez.com + 2edu.uptymez.com

Note:

Trigonometry: Is the branch of mathematics that deals with the properties of angles and sides of right angled triangle

TRIGONOMETRICAL RATIONS FOR SPECIAL ANGLES

Trigonometrical rations for special angles deal with 0°, 30°, 45°, 60°, 90°.

A

30°

45°

60°

90°

Sin A

0

edu.uptymez.com

    edu.uptymez.com

  edu.uptymez.com

1

Cos A

1

 edu.uptymez.com

    edu.uptymez.com

edu.uptymez.com

0

Tan A

0

 edu.uptymez.com

 1

    edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

 

Example 1.

Without using mathematical table evaluate

(i) 4 sin 45° + cos 30°

(ii) 4 tan 60° – Sin 90°

Solution:

i)                    4 sin 45° + Cos 30°

= 4 x edu.uptymez.com + edu.uptymez.com

=2edu.uptymez.com + edu.uptymez.com

=4edu.uptymez.com

(ii) 4 tan 60° – sin 90edu.uptymez.com

Solution:

4 tan 60° – sin 90edu.uptymez.com = 4edu.uptymez.com3 – 1

(iii) 3(cos60° + Tan 60°)

Solution:

= 3(edu.uptymez.com+ edu.uptymez.com 3)

= 3edu.uptymez.com              

= edu.uptymez.com

= edu.uptymez.com

Example 2

Find the value of      edu.uptymez.com       without using mathematical table                                                                                                    

Solution:

                                edu.uptymez.com

                                edu.uptymez.com 

                                edu.uptymez.com       

                                edu.uptymez.com

                                  edu.uptymez.com               

                                edu.uptymez.com edu.uptymez.com edu.uptymez.com2 + 3edu.uptymez.com3     

                                edu.uptymez.com edu.uptymez.com edu.uptymez.com

                                edu.uptymez.com

                               
 

EXERCISE

1. Evaluate the following without using mathematical table

(a).  3 sin 45° + 7tan 30°

(b).  edu.uptymez.com

     
 

 Solution:

3sin 45° + 7tan 30°

                                = 3 x edu.uptymez.com+ 7 x edu.uptymez.com3

                                = 3 x edu.uptymez.com + 7 x edu.uptymez.com3

                                = edu.uptymez.com

 
 

TRIGONOMETRIC TABLES

          Trigonometric tables deals with readings of the value of angles of sine, cosine and tangent from mathematical table when they are already prepared into four decimal

HOW TO READ THE VALUE OF TRIGONOMETRIC ANGLES FROM MATHEMATICAL TABLES

 
 

Example 1

Find the value of the following by using mathematical table

(i) Sin 43°= 0.6820

(ii) Sin 58º = 0.8480

(iii) Sin 24°42′ = 0.4179

(iv) Sin 52°26′ =  0.7923 + 4 = 0.7927


Example 2

By using mathematical tables evaluate the following

(a)Cos 37° =0.7986

(b)Cos82° =0.1392

(c)Cos 71°34′ =0.3162

(d)Tan 20° = 0.3640

(e)Tan 68° =2.4751

(f)Tan 54°22′ = 1.3950

Example3.

Find the value of the following letter from trigonometric rations

(i) Sin p = 0.6820

     Sin p = 0.6820

      P = Sin-1 (0.6820)

       P = 43°

ii) Sin Q = 0.7291

           Q = Sin-1 (0.7291)

            Q = 46°48′

iii) Tan R = 5.42°45

             R = 5. 42°45

              R = tan-1 (5.42°45)

              R = 79°33

 
 

APPLICATION OF SINE, COSINE AND TANGENT RATIOS IN SOLVING A TRIANGLE

Sine, cosine and triangle of angles are used to solve the length of unknown sides of triangles

Example

edu.uptymez.com

      edu.uptymez.com                        

From                                                                                                                                                               

SO

TO

CA

H

A

H

edu.uptymez.com

 
 

Sine C = edu.uptymez.com

Sin 55Ëš= edu.uptymez.com

20 x Sin 55Ëš= x

20 x 0.8198 = x

x = 16.4 cm

The value of x = 16.4cm

Example 2

Find the length   XY in a XYZ

   edu.uptymez.com

Solution:

From                                                                                                                           

SO

TO

CA

H

A

H

edu.uptymez.com

 
 

tan 62Ëš = edu.uptymez.com

             
 

tan 62° = edu.uptymez.com

13 x tan 62° = xy

13 x 1.8807 = xy

          24.4cm = xy

          xy = 24.4cm      

Example

Evaluate the value of m and give your answer into 3 decimal places

       edu.uptymez.com

From                                    

SO

TO

CA

H

A

H

edu.uptymez.com

 
 

Cos R =edu.uptymez.com              

              
 

Cos 36° = edu.uptymez.com

m = edu.uptymez.com                   

m = edu.uptymez.com                    

m = 14.833 cm

The value of m is 14.833 cm 
                            

EXERCISE

edu.uptymez.com


       edu.uptymez.com

Solution:

   From

SO

TO

CA

H

A

H

edu.uptymez.com

                                                                                                                                        
 

tan 43° = edu.uptymez.com

tan 43°=edu.uptymez.com

17 x tan 43° = y                                             

y = 17 edu.uptymez.com

y =15.85cm

  

Share this post on: