Form 4 Mathematics – VECTORS

Share this post on:

 
 

Displacement and Position Vectors.

Displacement

edu.uptymez.com 
Examples of vector quantities are displacement, Velocity, acceleration, force, momentum, electric field and magnetic field.

Quantities which have magnitude only scalars, for example distance, speed, Pleasure, time and temperature.

edu.uptymez.com

Sometimes a single. Small letter with a bar below like a or a like a

These are physical quantities which have magnitude and direction

vector quantities – have both magnitude and direction ie velocity , acceleration etc.

Scalar quantities – are quantities which only have magnitude but nit direction.  ie size, mass , time….etc

 
 

Naming vectors

(i). capital letters OA

    edu.uptymez.com
(ii). small letter a

                               (iii). small letter with bar

a ,  b

1. Equivalent vectors

Two vectors are equivalent if they have the same magnitude and direction.

    edu.uptymez.com

 
 

edu.uptymez.comedu.uptymez.comHI is not equivalent to AB and CD

 
 

2.  displacement vector

    edu.uptymez.com 

 
 

1.      position vector
In the xy plane all vectors having their initial Points at the origin and their end Points elsewhere are defined as position vectors.  Position vectors are named by the coordinates of their end points

   edu.uptymez.com

 
 

 
 

OA = (3,3)

 
 

4. unit vector.  

In the xy plane the position vector of unit length in the positive x-axis direction is named i and the position vector of unit length in the positive y-axis direction is named j.
Both i and j are Unit Vectors.

    edu.uptymez.com

 
 

 
Questions

1. write the following vectors as position vectors.

         a. a ( -3,-4) = ( -3, 0) + ( 0,-4)

                    =  -3(1,0) + -4 (0,1)

                    = -3i -4j

         b.  b ( -5, 5) = ( -5, 0) + ( 0,5)

                    = -5 ( 1,0) + 5(0,1)

                    = -5i + 5j

         c.     c = ( -1, 6)

          = (-1,0) + ( 0,6)

          = -1 ( 1,0) + 6( 0,1)

          = -1i + 6j

Alternative  = -i + 6j

2.  write the following vectors as position vectors

         a. S = – 8 i

        = -8i + 0j

        = -8 ( 1,0) + 0( 0,1)

        = ( -8,0)

         b.  u = 7j

      u  = 0i +7 j

          = 0( 1,0) + 7 ( 0,1)

u = (0,7)

 
 

Exercise

1. express the  following vectors in form of I and j vectors

(a)

  P ( -3,6)

   = ( -3, 0) + ( 0,-6)

   =   -3 ( 1,0) + 6 ( 0,1)

   = -3i + 6j

(b)

          q = ( 5 , -2)

         = ( 5,0) + ( 0,-2)

         = 5( 1,0) + – 2( 0,1)

         = 5i – 2j

 (c)

 r = (-4 , 2)

    r = (4,0) + (0,2)

      = -4(1,0) + 2 ( 0,1)

      = -4i + 2j

3. express each of the following in a position vector

(a).  a = 3i + 2j

     = 3( 1,0) + 2( 0,1)

      = (3,0) + ( 0,2)

      =   ( 3,2)

 
 

(b).  b = 6i – 7j

         = 6( 1,0) – 7 ( 0,1)

         =  ( 6,0) + ( 0,-7)

         = ( 6,-7)

 
 

(c).   e = -3i

     = 0 (1,0) + ( 0,-3)

     = (0,-3)

 

MAGNITUDE (MODULUS) OF A VECTOR
The magnitude of vectors is used to define the size of a vector. The other name for magnitude is modulus.The magnitude or modulus of a vector is a scalar quantity.

            Consider the position vector r = (x, y)

   edu.uptymez.com

 
 

Vector OP = r = (x,y)

OP is perpendicular to the x-axis

PR is perpendicular to the y-axis

 
 

Triangle OPQ is right angled at Q

By Pythagoras theorem

PQ2= OQ2 + QP2

OP2= x2 + y2

OP = edu.uptymez.com

If r = ( x,y) then

edu.uptymez.com  = edu.uptymez.com

this is the formula for finding the magnitude

 
 

Example;

 Calculate the magnitude of the position vector

v = (-3, 4)

   edu.uptymez.com =  edu.uptymez.com

       = 5

 
 

Unit vector

If U is any vector, the unit vector in the direction of u is given by

edu.uptymez.com and is denoted as edu.uptymez.com

 
 

Example

Find the unit vector in the direction of the vector u= (12,5)

edu.uptymez.com = edu.uptymez.com = 13
edu.uptymez.com

 

 
 

Exercise

1.   define the magnitude of a vector hence calculate the magnitude of

a= -12i – 5j

 
 

solution

a= -12i edu.uptymez.com 5j

        = -12( 1,0) -5( 0,1)

        = (-12,0) + (0,-5)

        = ( -12,-5)

 
 

edu.uptymez.com  =   edu.uptymez.com 

    = edu.uptymez.com

     =  13

 
 

2.   a.   find   i + j

            =  1,1

            = edu.uptymez.com

           =  edu.uptymez.com

 
 

 
 

SCALAR MULTIPLICATION


Example;

 1. if a  = 3i + 3j  and edu.uptymez.com  = 5i + 4J find, -5a + 3b

      = -5edu.uptymez.com +  3edu.uptymez.com   

      = -5 (3i + 3j) + 3( 5i +4J)

      =  -15i -15j  + 15i + 12j

      = -3j 

 
 

2. given edu.uptymez.com  = ( 8,6) and edu.uptymez.com = ( 7,9)

 
 

Find 9edu.uptymez.com – 8edu.uptymez.com

 
 

    =  9 ( 8,6) – 8( 7,9)

    =  (72,54)  – (56 , 72)

           = (16,-18)

 
 

3.  given vector a = –i + 3j  , b = 5i -3j and c = 4a + 3b

  (a)  find the magnitude of vector c

  (b) find the unit vector in the direction of vector d where d =2a + -3b + c

 
 

solution;

(a) c = 4a + 3b

       = ( –i + 3j ) + 3 ( 5i – 3j)

       = -4edu.uptymez.com + 12edu.uptymez.com + 15edu.uptymez.com – 9edu.uptymez.com 

       = 11i + 3j    ( 11,3)

      
 

edu.uptymez.com  =  edu.uptymez.com

     =  edu.uptymez.com

                = edu.uptymez.com

 
 

b.d = 2a – 3b
 + c

    = 2( -i + 3j )  -3 (5i  +- 3i  ) + 11i + 3j

    = -2i + 6j  -15i + 9j + 11 i + 3j

    = -2i -15i + 11i + 6j + 3j + 9j

    = -6i + 18j  

    ( -6 , 18)

edu.uptymez.com  = edu.uptymez.com

 
 

edu.uptymez.com =  edu.uptymez.com

         
 

 
 

ADDITION OF VECTORS 
The sum of any two or more vectors is called the resultant of the given vectors.

here we have 3 laws which govern us.

Resultant is the one which represents the sum of vectors.

 
 

1. THE TRIANGLE LAW

The initial point of the second vector is joined to the end points. The first vector, resultant is joined by completing the triangle whose initial point is the initial point of the first vector and its end point concedes with that of the second vector.

 

edu.uptymez.com

                        edu.uptymez.com
 

82

     = 10

Cos α = edu.uptymez.com

Cos B = edu.uptymez.com

 
 

Hence 0.6 and 0.8 are direction cosine of a

Cos α = 0.6

α= 53016′

 
 

Exercise:

    (1)   Evaluate the magnitude and direction of b= -8i + 6j

 
 

Solution

edu.uptymez.com    =  edu.uptymez.com

       = 10

Cos α= edu.uptymez.com = 0.8

             
 

Cos B = edu.uptymez.com

Cos B = 0.6

B = 5303′

 
 

2.  Calculate the direction cosines of c = 3i + 4j , hence show that the sum of the squares of these direction cosines is one.

 
 

Solution

edu.uptymez.com    =  edu.uptymez.com 

        = 5

Cos α = edu.uptymez.com= 0.6

Cos B = edu.uptymez.com = 0.8

0.62+ 0.82 = 1

         1.00 = 1

         1 = 1

 
 

3. Find the direction cosine of

(a)    a = i+ j

  edu.uptymez.com    = edu.uptymez.com

         
 

Cos α = edu.uptymez.com x edu.uptymez.com  =  edu.uptymez.com
Cos B = edu.uptymez.com x edu.uptymez.com= edu.uptymez.com
The direction of cosine a is edu.uptymez.com   

                                                
 

4.  given a = ( 1,2 ) b = ( -2,-1) and c = ( 3,7)

      Calculate 2a + 3b + 4c

 
 

Solution

= 2(1,2) + 3( -2,-1) + 4( 3,7)

= (2,4) + (-6,-3) + (12,28)

= (8,29)

 
 

BEARING

1.  Two methods used in reading bearing of all angles are measured with reference from the north direction only.

North is  taken  as 0000 , east as 0900, south as 1800, and west as 2700.

      edu.uptymez.com

 
 

Point p located at a bearing of 0500. Point Q is located at a bearing of 2000.

 
 

   edu.uptymez.com

 
 

 
 

Bearing of point B from point A is measured from north direction at point A to the line joining AB ( bearing of point B from A is 0620)

Bearing of A from B is measured from the north direction at B to the line joining BA.

(Bearing of A from B is 2420)

 
 

Application of vectors

Questions:

1. a student walks 400m in the direction of S450E from the dormitory to the parade ground and then he walks 100m due west to his classroom. Find his displacement from the dormitory to the classroom.
edu.uptymez.com

      
     From figure above the resultant is edu.uptymez.com. By the cosine rule.
               edu.uptymez.com2 = 4002 + 1002 – 2 x 400x 100cos 450

       = 160000 + 10000- 80000 x edu.uptymez.com

                                                         
 

       = 170000 edu.uptymez.com 56568.5

      
        =113440
From figure above the resultant is edu.uptymez.comBy the cosine rule.

edu.uptymez.com
    
Bearing = S(450 – 120 )E = S330E.
The boy displacement from the dormitory to the classroom is 336.8metres at a bearing of S330E   

                                              
 

2.    A boat crosses a river at velocity of 20km/ hr southwards. The river has a current of 5km/hr due east. Calculate the resultant velocity of the boat.

 
 

Solution

 
edu.uptymez.com 

 
 

      Solution            
       Let the velocity of the boat be v that of the current y and the resultant velocity v                 
       Let ø be the angles between v and vb

                         Rr = 5i – 20j

edu.uptymez.com = edu.uptymez.com

      = edu.uptymez.com

      = edu.uptymez.com

 
Let θ be the angle between v and vb.
edu.uptymez.com

No.

logarithm

 
 

(4.25 x 102 )1/2

 
 

2.002 x 101

 
 

      2.6284

           2

 
 

       1.3142

edu.uptymez.com

 
edu.uptymez.com

                                       
 

3.      A student walks 500m in the direction S 450E from the classroom to the basketball ground and then she walks 200m due west to the dormitory. What Is her displacement from the classroom.

 
 

Solution

                                     
 

 edu.uptymez.com
 

= 650000 – 200,000x 1.414

= 290,000- 282800

=edu.uptymez.com

 
 

No.

Logarithm

  (3.672x 105)1/2

63639

  5.5649

       2

   2.782445

edu.uptymez.com

= 636

 
 

 
 

4. An aeroplane flies with the speed of 100km/ hr and the wind is blowing from south with speed 40km/hr.

(a). find the time used by an aeroplane to fly due north the distance 70km.

(b). in what bearing must the pilot set his plane in order to fly due east.

(c). find the resultant speed of an aeroplane to fly east in the nearest km/hr and time taken to fly t he distance 296 km due east.

 
 

Solution

(a)

v = 100km/hr + 40km/hr = 140km/hr

Time = d/v

         = edu.uptymez.com

          
 

         = edu.uptymez.com hr

     
 

         100KM

 edu.uptymez.com

 
 

 
 

(b).     cos θ=   edu.uptymez.com

          edu.uptymez.com

1002 = 402 + X2

 10000- 16000= X2

X = edu.uptymez.com

 
 

No.

Logarithm

  ( 8.4 x 103) ½

 
 

 
 

9.164x 101

3.9243

     2

 
 

1.9621

edu.uptymez.com

Resultant (s) = 91.64 edu.uptymez.com92

T = D / V                                                                      

= edu.uptymez.com

   
 

= 3.217

 

2. THE PARALLELOGRAM LAW

edu.uptymez.comTwo vectors sharing a common initial point P to get the resultant we should complete a parallelogram.


Example;

                     edu.uptymez.com

 
 

PR = U + V = V + U

 
3. THE POLYGON LAW OF VECTOR ADDITION.

 Here the resultant is obtained by joining endpoint to initial point of the vector one after another.

The resultant is the vector joining the initial point of the first vector to the end point of the second vector.

 
 

Exercise 5.3

1. given the vectors p, q, r, s   and t in the figure.

Find (a). P+Q

         (b). P+Q+R

         (c). P+Q+R+S

       
 

 
 

Solution

 
 

a.
    edu.uptymez.com

 
 

 

b.

                          edu.uptymez.com

 
 

 
 

c.

 
 

                        edu.uptymez.com

 

DIRECTION OF A VECTOR

 
 

1. DIRECTION COSINE

Consider a vector edu.uptymez.com = ( X, Y)

OP makes angle α with the positive direction along the direction of the y-axis

                     
                           edu.uptymez.com

Triangle OQP is right angled at Q

Pedu.uptymez.comR = Oedu.uptymez.comQ (alternate interior angle)

edu.uptymez.com   

Cos α = edu.uptymez.com

              
 

Cos B = edu.uptymez.com 

             
 

The values of cos α and cos B are the direction cosines of vector edu.uptymez.com

 
 

Example

1. If a = 6i + 8j

Find the direction cosines of a , hence

Find the angle that a makes with the positive axis.

 
 

edu.uptymez.com   = edu.uptymez.com

 
 

Share this post on: