FORM 6 PHYSICS: AC THEORY PART 3

Share this post on:


INDUCTIVE REACTANCE

Inductive reactance is the opposition in which an inductor offers to current flow. It is denoted by XL

 Inductance not only causes the current to lag behind the voltage but it also limits the magnitude of current in the circuit.

 We have seen above that,

                   Io = edu.uptymez.com

                   ωL =  edu.uptymez.com                     

Clearly the opposition of inductance to current flow is ωL.  This quantity ωL is called inductive reactance XL of the inductor.

            Inductive reactance XL
edu.uptymez.com

a) From
XL = edu.uptymez.com

 But  edu.uptymez.com = edu.uptymez.com edu.uptymez.com and Io = edu.uptymez.com edu.uptymez.com

Then,
edu.uptymez.com
XL = edu.uptymez.com

                     
b) For d.c

       f = 0

so that,

         XL = 2edu.uptymez.com

         XL = 2edu.uptymez.com
edu.uptymez.com

Therefore a pure inductance offers zero opposition to d.c
edu.uptymez.com

c)  XL = 2edu.uptymez.com

Therefore,the greater  f,the greater is XL and vice versa.

d) We can show that the units of XL are that of ohm

XL = ωL = edu.uptymez.comx   Henry  =  edu.uptymez.com  and                                            

            XL =  edu.uptymez.com

III) Average Power consumed

E = edu.uptymez.comsin ωt

     I = edu.uptymez.comsin (ωt-edu.uptymez.com          I = –edu.uptymez.com cos ωt

Instantaneous power P

P = EI

P = (edu.uptymez.comsin ωt) (-edu.uptymez.comcos ωt)

               P = –edu.uptymez.com edu.uptymez.com sin ωt cos ωt

              P = edu.uptymez.com Sin 2ωt 

Average power P is equal to average of power over one cycle.

P =edu.uptymez.com edu.uptymez.comSin 2ωtdt  
          
            P = 0              

Hence average power absorbed by pure inductor is zero

During one quarter cycle of alternating source of e .m .f. energy is stored in the magnetic field of the inductor this energy is supplied by the source.

During the next quarter cycle the stored energy is returned to the source.   For this reason average power absorbed by a pure inductor over a complete cycle is zero.

NUMERICAL EXAMPLES

1. A pure inductive coil allows a current of 10A to flow from a voltage of 230V  and frequency 60Hz supply.

Find    

i) Inductive reactance

ii) Inductance of the coil

iii) Power consumed

Write down equations for voltage and current:


Solution


EV = 230V

IV = 10A

f =50Hz

      i)   Inductive reactance XL

         XL = edu.uptymez.com = edu.uptymez.com

ii)  Inductance of the coil L

        From

                 XL =2edu.uptymez.com                                               

edu.uptymez.com

L = 0.073 H

iii)   Power absorbed = 0

Also

edu.uptymez.com= 230 x edu.uptymez.com                   edu.uptymez.com= 10 xedu.uptymez.com

edu.uptymez.com= 325.27V              edu.uptymez.com= 14.14A

   ω = 2edu.uptymez.com

           ω = 314

Since in pure Inductive circuit current lags behind the applied voltage by  edu.uptymez.com  radians. The equation for voltage and current are,

E = 325 .27 sin 314t,      I = 14.14 sin (314t)

2. Calculate the frequency at which the inductive reactance of 0.7H inductor is 220Ω

Solution

  XL = 220 Ω

  L = 0.7H

  f =?
edu.uptymez.com

  f =edu.uptymez.com

 
edu.uptymez.com  f = 50 Hz

3. A coil has self inductance of 1.4H.  The current through the coil varies sinusoidally with amplitude of 2A and frequency 50 Hz

Calculate

i) Potential difference across the coil

ii) r .m .s value of P.d across the coil.


Solution
edu.uptymez.com

(i) P.d across the coil

E = Ledu.uptymez.com

E = Ledu.uptymez.com

E = Ledu.uptymez.com

E = L edu.uptymez.comcos edu.uptymez.comt,

E = L edu.uptymez.com2edu.uptymez.com cos2edu.uptymez.com

E = 2edu.uptymez.com

E = 880 cos 100 edu.uptymez.com

ii)  r.m.s value of potential different across the coil

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com = 622.2V


4.  How much inductance should be connected to 200V, 50 Hz a.c
supply so that a maximum current of 0.9A flows through it?

Solution

edu.uptymez.com= 200V

Io = 0.9A

f = 50 Hz

Peak value of voltage edu.uptymez.com

edu.uptymez.com=edu.uptymez.com edu.uptymez.com

edu.uptymez.com= edu.uptymez.com edu.uptymez.com

Inductive reactance L
XL =  edu.uptymez.com

XL =  edu.uptymez.com

XL = 314.27 Ω

Inductance L,
L = edu.uptymez.com

L= edu.uptymez.com

L = 1 H


5.  An Inductor of 2H and negligible resistance is connected to 12V, 50Hz supply.  Find the circuit current, what current flows when the inductance is changed to 6H?


Solution

* For the First case XL

XL = 2edu.uptymez.com

XL = 2edu.uptymez.com

XL = 628 Ω

Circuit current

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com

edu.uptymez.com = 0.019A

* For the second case XL

XL = 2edu.uptymez.com

XL = 2edu.uptymez.com

XL = 1884 Ω

Circuit current

edu.uptymez.com

edu.uptymez.com= edu.uptymez.com

edu.uptymez.com= 0.0063A

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *