FORM 6 PHYSICS: ELECTROMAGNETISM PART 1

Share this post on:

 

 This is the production of a magnetic field by current flowing in a conductor.

The magnetic effect of current was discovered by Ousted in 1820. The verified magnetic effect of current by the following simple experiment.

 Figure below shows a conducting wire AB Above a magnetic needle parallel to it.

edu.uptymez.com

 So long as there is no current in the wire, the magnetic needle remains parallel to the wire i.e. there is no deflection in the magnetic needle.

 As soon as the current flows through the wire AB, the needle is deflected.

edu.uptymez.com
                            
                              Magnetic needle

 When the  current in wire  AB  is  Reversed the  needle is  deflected  in the  opposite  direction
 
This  Deflection is  a convincing proof of  the  existence  of  a magnetic field  around  a  current  carrying conductor.

 On increasing the current in the wire AB the deflection of the needle is increased and vice versa.
 
This  shows  that  magnetic field  strength  increases  with  the  increase in  current and  vice versa  
 
It is clear from Worsted’s experiment that current carrying conductor produces a magnetic field around it.

 
The  larger the  value  of  current in the  conductor the  stronger is the  magnetic  field and  vice  versa.

Magnetic field
 Is the  region around a magnet where magnet effect can be experienced.
OR
Is the space around a current carrying conducting (magnet) where magnetic effects can be experienced.

The  Direction of  a field at a point is  taken to be  the  direction in  which  a  north magnetic pole would  move more  under  the  influence  of  field  if it  were placed at  that point.
The magnetic field is represented by magnetic lines of force which form closed loops.

 The magnetic field disappears as soon as the current is switched off or charges stop morning.

Magnetic  flux Φ
is  a  measure  of  the number  of  magnetic field  lines passing  through the  region.
    The  unit of  magnetic flux is  the  Weber (Wb)
 The  flux through an  area  A  on figure  below  the   normal  to  which  lies  at  angle 𝜃  to  a  field  of  flux  density B
 
 
 
 edu.uptymez.com           
edu.uptymez.com

 edu.uptymez.com
Is  a  quantity  which  measures the  strength  of  the  magnetic field
     It  is  sometimes  called magnetic  
     It is  a vector  quantity
     The  SI unit  of  Magnetic  flux density is  Tesla (T) or  Wb/m2

Magnetic flux density is simply called magnetic field B

B = θ/A

FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD
Consider a positive charge +Q moving in a uniform magnetic field edu.uptymez.com with a velocity edu.uptymez.com
    Let the  Angle between edu.uptymez.com and edu.uptymez.com be θ  as  shown

edu.uptymez.com
                                              
  It  has  been found experimentally  the  magnetic  field  exerts a  force  F on  the  charge.
   The  magnitude  F of  this  force  depends  on the  following factors
   (i) F  α θ
   (ii)F  α B
  (iii) edu.uptymez.com
Combining the factors we get

         edu.uptymez.com
    Where K is a constant of proportionality
        The unit of B is so defined that K = 1

                edu.uptymez.com
Equation (a) can be written in a vector form as:-

               edu.uptymez.com

  F = the force of the particle (N)
  B = the magnitude of the magnetic flue density of the field T
  Q = the charge on the particle
  V= the magnitude of the velocity of the particle

Definition of  edu.uptymez.com
From
    F = BQVsin⁡θ
 
  
 If V = 1, Q = 1, θ= 90 then

F = Sin90
F=B     

Magnetic field ( edu.uptymez.com) at a point in space is equal to the force experienced by a unit charge moving with a unit velocity perpendicular to the direction of magnetic field at that point  

Right Hand Grip Rule

 Grip the wire  using  the  right hand with the  thumb  pointing in the  direction of the  current  the  other fingers unit point in the  direction of  the  field.

–          For an electron (negatively charged) entering the magnetic field as shown below

 
 

edu.uptymez.com                        

                 
 

          The Direction of positive charge will be exactly opposite. Applying Right hand Grip Rule it is clear that  Direction  of force on the  electron will be  vertically  upward

  For a  positively charged particle, it will be  vertically downward

Direction of magnetic field means from N –pole to S-pole.

SOME CASES OF MAGNETIC FORCE F

Consider an electric charge Q moving with a velocity V through a magnetic field B. then the magnetic force F on the charge is given by

                               F = BQVedu.uptymez.com

(i)        When  edu.uptymez.com = 0o or  1800  

                            F = BQVedu.uptymez.com

                            F=   BQVSin00 or   F = BQVedu.uptymez.com

                            F= 0                       

           Hence  a charged particle moving parallel(or Anti parallel) to the  direction of magnetic field experiences no force

(ii)       When  edu.uptymez.com =900

         F = BQVedu.uptymez.com

         F = BQVedu.uptymez.com
          edu.uptymez.com=1

          F = BQV

                       
 

        Hence a force experienced by charged particle is maximum when it is moving perpendicular to the direction of magnetic field.

(iii)    When V=O, the charge particle is at rest.

F = BQVedu.uptymez.com

                          F=BQ(0)edu.uptymez.com

F=O

          If a charged particle is at rest in a magnetic field it experiences no force.

(iv)   When Q = O

            F = BQVedu.uptymez.com
                    F = 0


Hence electrically neutral particle (eg neutron) moving in a magnetic field experiences no force. 

 

The magnetic force F acts perpendicular to velocity V (as well as B)

          This  means  that  a uniform magnetic field  can  neither  speed  up  nor  slow down a  moving charged particle;  it  can  charge only the  Direction  of V and  not  magnitude of  V

          Since  the  magnitude  of  V does  not  charge the  magnetic force  does not change  the  kinetic energy of  the  charged particle.

UNITS AND DIMENSIONS OF edu.uptymez.com

 The SI unit of magnetic field B is Tesla

            Now

            F = BQVedu.uptymez.com

             edu.uptymez.com

If   Q = 1C, V =1m/s, Q= 900   F= 1N

B  = 1T

 Hence   the  strength of  magnetic field  at a  point is  1T if  a charge of  1C when  moving  with a  velocity of  1m/s  at  right angles to  the  magnetic field, experiences a  force  of  1N at  that  points.

Magnetic field of earth at surface is about 10 – 4T. On the other hand, strong electromagnets can produce magnetic fields of the order of 2T.

Dimensions of edu.uptymez.com

edu.uptymez.com     

edu.uptymez.com

 
 

edu.uptymez.com                

 edu.uptymez.com

       Worked Examples
1.       A proton is moving northwards with a velocity of edu.uptymez.comm/s in a magnetic field of 0.1Tdirected eastwards. Find the force on the proton. Charge on  proton = 1.6 x 10 -19C.

Solution

 F = BQVedu.uptymez.com

B= 0.1T

 V= edu.uptymez.comm/s
F=0.1 X 1.6 X 10-19 X 5 X 106X Sin 90

Q = 1.6 X 10-19C

 edu.uptymez.com= 900

edu.uptymez.com

 
 

2.  An electron experiences the greatest force as it travel   at 3.9 x105 m/s in a magnetic field when it is moving westward.  The force   is upward and is of magnitude edu.uptymez.comN what is the magnitude and direction of the magnetic field.

         Solution

              The conditions of the problem suggest that the electron is moving at right angles

                  edu.uptymez.com To the direction of the magnetic field

               F = BQVedu.uptymez.com, F = 8.7 x 10 -13N

                Q= 1.6 X10 -19C

                 V=3.9X105m/s

edu.uptymez.com

              B = 13.14T

            By right hand rule per cross product, the direction of the magnetic field is towards northward.

3.    An  α  – particle of mass 6.65 x 10-27 kg is  travelling at right angles to a magnetic field with a speed of 6×105m/s. The strength of   the magnetic field is 0.2T.calculate the force on the edu.uptymez.com – particle and its acceleration.

 Solution
  Force on   α – particle   F = BQVedu.uptymez.com

  M = 6.65 X10-27Kg

  V = 6 x 105m/s

   B = 0.2T

   edu.uptymez.com = 900

    F = BQVedu.uptymez.com

    = (0.2 x 2x 1.6×10-19) x edu.uptymez.comx Sin90Ëš
   
   edu.uptymez.com

      Acceleration of α – particle

     F= mÉ’

   É’= edu.uptymez.com=   edu.uptymez.com

          edu.uptymez.com
  

4.       A  copper  wire  has  1.0 x 1029 free  electrons per  cubic meter, a  cross sectional  area  of  2mm2 and  carries  a  current of  5A  . The wire is placed at right angle to a uniform magnetic field of strength 0.15T. Calculate the force the acting on each electron.

         Solution

         I = neAedu.uptymez.com

         Drift velocity = edu.uptymez.com

          

         n= 1×1029m-3   e = 1.6×10-19c   A= 2mm2 = 2×10-6m2

         I = 5A

      edu.uptymez.com

Force on each electron F= BQedu.uptymez.com Sinedu.uptymez.com

Q= 1.6 x 10-19c

B= 0.15T                                             

Q=900

edu.uptymez.com

BIOT –SAVART LAW

The  Biot – Savart  law  states  that the  magnitude  of  magnetic  flux  density  dB  at a point  P  which is  at a distance  r  from  a very short  length  dl of  a conductor  carrying  a current I  is  given by.

edu.uptymez.com

edu.uptymez.com

where edu.uptymez.com is  the  Angle between the  short length dl and  the  line  joining  it to point  P
edu.uptymez.com

          K  is a constant of  proportionality  its  value  depends on the  medium in which the  conductor is  situated and  the  system of units  adopted.

           For  free space  vacuum  or air

edu.uptymez.com

edu.uptymez.com

 edu.uptymez.com

This equation is known as Biot –Savart Law and gives the magnitude of the magnetic field at a point due to small current element

Current element

 Is  the  product of  current (I)  and  length of  very small  segment (edu.uptymez.com) of  the  current carrying  conductor.

Current element =edu.uptymez.com

          Current element produces magnetic field just as a stationary charge produces an electric field the current element is a vector.

          Its  Direction is  Tangent  to the  element and  acts in the direction of  current flow  in the  conductor


Biot -Savart law holds strictly per steady currents

 
 

Direction of     B

 edu.uptymez.com
           

           The  direction  of  edu.uptymez.com  is  perpendicular  to  the  plane  containing   edu.uptymez.com   and   edu.uptymez.com     by  right hand rule  for the  cross  product the  field  is  directed inward. 

 
 

Special cases

            edu.uptymez.com

 
 

 
 

(i)   When edu.uptymez.com = 00 or 1800

i.e Point P lies on the axis of the conductor

  
      edu.uptymez.com
         edu.uptymez.com

 
 

          Hence there is no magnetic field at any point on the thin current carrying conductor minimum value.

 
 

(ii)    When edu.uptymez.com = 900

 
 

When point P lies at a perpendicular position w .r. t current element

edu.uptymez.com 

          Hence magnetic field due to a current element is maximum in a plane passing through the element and perpendicular to its axis.

         Important point about Biot – Savant law

                (i)   Biot – Savant law is valid per symmetrical current nglish-swahili/distribution” target=”_blank”>distributions.
                 
       (ii)    Biot – Savant  law  cannot  be  proved  experimentally because  it is  not  possible to have  a current  carrying  conductor  of  length dl

          (iii)     Like  coulomb’s  law  in  electrostatics, Biot- Savant law  also obeys  inverse square  law

          (iv)     The  Direction of  dB   is  perpendicular to  the  plane  containing  edu.uptymez.com  and  edu.uptymez.com

          (v)      This  law  is  also  called  Laplace’s  law and  inverse square law’

 
BIOT – SAVART LAW VERSUS COULOMB’S LAW IN ELECTROSTATICS

 According  to  coulomb’s  law  in  electrostatics, the  eclectic field due to  a  charge  element dQ  at a distance  r is  given by

        edu.uptymez.com

        
 

 According to Biot – Savart law the magnetic field due to a current element  edu.uptymez.com  at a distance r is given by  

edu.uptymez.com 

From the above two equations we note the following points of Similarities and Dissimilarities.

Similarities

(i)   Both laws obey inverse square  law

(ii)  Both the  fields(magnetic field and  Electro static field) obey  superposition principles

(iii)Both the fields are long range fields.

Dissimilarities

(i)  The Electric field is produced by a scalar source i.e.  Electric chargeedu.uptymez.com. However the magnetic field is product by a vector source i.e.  current  edu.uptymez.com

(ii)  The Direction the Electric field is along the displacement vector i.e.  The line joining the source and field point. However  the  direction of  magnetic  field  is  perpendicular  to the  plane  containing current  element  edu.uptymez.comand  displacement vector  edu.uptymez.com 

(iii)    In Biot –Savant law the magnitude of magnetic field dB α Sinedu.uptymez.com Where edu.uptymez.com is the  Angle  between current element edu.uptymez.com  and  displacement vector   edu.uptymez.com  However there is  no  angle  dependence in  coulomb’s law for electrostatics

  

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *