FORM 6 PHYSICS: ELECTROMAGNETISM PART 2

Share this post on:

 MAGNETIC FIELD AT THE CENTER OF CURRENT CARRYING CIRCULAR COIL

 Consider a circular coil of radius r and carrying current I in the Direction shown in figure

                                                                   edu.uptymez.com

           Suppose  the   loop  lies  in the  plane  of paper it is  desired  to find  the  magnetic field  at  the  centre O of  the  coil

            Suppose  the  entire  circular coil is divided into a  large  number  of  current  elements each of  length edu.uptymez.com

         According  to  Biot – Savant  law, the  magnetic field edu.uptymez.com at the centre O of the  coil  due  to current  element edu.uptymez.com is  given  by

  edu.uptymez.com……………edu.uptymez.com

           The  direction  of  dB  is  perpendicular to the  plane  of the  coil and is  Directed  inwards

           Since  each  current  element  contributes  to the magnetic field  in the  same  direction, the  total magnetic field B  at the  centre O can be  found  by integrating equation…………(i)

edu.uptymez.com

              L- Total length of the coil = 2edu.uptymez.comr

 edu.uptymez.com

 If the coil has N turns each carrying current in the same direction then contribution of all turn are added up.

 B=edu.uptymez.com

MAGNETIC FIELD DUE TO INFINITELY LONG CONDUCTOR

 edu.uptymez.com

 The flux density dB at P due to the start length dl given by equation as
edu.uptymez.com

From the figure (A)

       edu.uptymez.com   , edu.uptymez.com
edu.uptymez.com       edu.uptymez.com       

      r =   edu.uptymez.com                        

        edu.uptymez.com = a cot edu.uptymez.com

       edu.uptymez.com = -aedu.uptymez.com 

Substituting for edu.uptymez.com and edu.uptymez.com gives

       edu.uptymez.com

        edu.uptymez.com

  The total flux density B at P is the sum of the flux densities of all the short lengths and can be found by letting dedu.uptymez.com→O and integrating over the whole length of the conductor.

        edu.uptymez.com

       edu.uptymez.com

 The  limits  of  the  integration  are edu.uptymez.com and 0 because  these are  values of 𝜃 at the  ends of the  conductor
    
  
edu.uptymez.com

        edu.uptymez.com

        edu.uptymez.com

       edu.uptymez.com

FLUX DENSITY AT ANY POINT ON THE AXIS OF A PLANE CIRCULAR

edu.uptymez.com
                          edu.uptymez.com

Circular coil with its plane perpendicular to that of the paper

  The  flux  density dB at p due  to the  short length dl of the coil  at  X, where  X is  in  the  plane  of the  paper, is  given by  equation as

    edu.uptymez.com

          By symmetry, when all the short lengths edu.uptymez.com are taken into account the components of magnitude edu.uptymez.com sum to zero.

          Each  short length  produces a component of magnitude edu.uptymez.comSin α parallel to the  axis and  all those components are  in the  direction shown

          The  total  flux density  is  therefore  in  the  direction of edu.uptymez.comSin α  and  its magnitude B is  given by

              edu.uptymez.com

           edu.uptymez.com

 The radius vector XP of each small length is perpendicular to it, so that edu.uptymez.com=900 and there pore Sinedu.uptymez.com = 1

         edu.uptymez.com

Since,

edu.uptymez.com= 2edu.uptymez.com(the circumference of the coil)

 edu.uptymez.com

 edu.uptymez.com, But edu.uptymez.com = edu.uptymez.com

 edu.uptymez.com

 edu.uptymez.com

For a coil of N Turns

 edu.uptymez.com

 When S= r
edu.uptymez.com

Also from the figure

edu.uptymez.com

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *