FORM 6 PHYSICS: ELECTROMAGNETISM PART 2

Share this post on:

FORCE ON A CURRENT CARRYING CONDUCTOR PLACED IN A MAGNETIC FIELD
We know that a moving charge in a magnetic field experiences a force

          Now electric current in a conductor is due to the drifting of the force electrons in a definite direction in the conductor

           When such a current carrying conductor is placed in a uniform magnetic field, each free electron experiences a force.

          Since the free electrons are constrained in the conductor, the conductor itself experiences a force.

          Hence a current carrying conductor placed in magnetic field experiences a force F.

 Consider a conductor of the length L and area of cross- section a placed at an angle 𝜃 to the direction of uniform of magnetic field B.
edu.uptymez.com

edu.uptymez.com– is the angle between the plane of the conductor. The magnetic force experienced by the moving charge in a conductor is F = BQV Sinedu.uptymez.com

            For steady current       I = edu.uptymez.com

                                                Q =I t

                                                F= edu.uptymez.com

            The velocity for direct current is constant

                                                V= edu.uptymez.com

                                                F = B I tedu.uptymez.com

                                                edu.uptymez.com

F= Force on the conductor (N)

B= Magnitude of the magnetic flux density of the field (T)

I = Current in the Conductor (A)

L= length of the conductor (M)

  The current in the conductor I

edu.uptymez.com

                   Special cases

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com

Thus if current carrying conductor is placed parallel to the direction of the magnetic field of the conductor will experience no force.

ii.) edu.uptymez.com

                        F = BILedu.uptymez.com

                      edu.uptymez.com

Hence current carrying conductor will experience maximum force when it placed at right angles to the direction of the field.

One Tesla

Is the  magnetic  flux density  of a  field  in  which a  force of  IN  acts on  a 1M length of a  conductor  which is  carrying a  current of  IA and  is  perpendicular to  the  field.

edu.uptymez.com

 B = Tesla

edu.uptymez.com

 The Direction of the force

  Experiment shows that  the  force  is  always perpendicular  to the  plane  which  contains both the  current and  the  external field   at the  site of  the  conductor

            The  direction  of the  force  can be  found by  using  Fleming’s left  hand rule

 Fleming’s left hand rule

States that if the first and the second fingers and the thumb of the left hand are placed comfortably at right angles to each other, with the first finger pointing in the direction of the current then thumb points in the direction of the force i.e. Direction in which Motion takes place If the conductor is free to move.

Maxwell’s Corkscrew rule

States that if a right handed corkscrew is turned so that its point travels along the direction, the direction of rotation of corkscrew gives the direction of the magnetic field.

FORCE BETWEEN TWO PARALLEL CONDUCTORS CARRYING CURRENTS

  When two parallel current carrying conductors are close together, they exert force on each other.

           It is because one current carrying conductor is placed in the magnetic field of the other

      If currents are in the same direction the conductor attract each other and  If currents are in the opposite directions conductors  repel each other

          Thus like currents attract, unlike currents repel.

Consider two infinitely long straight parallel conductors X and Y carrying currents I1 and I2 respectively in the same direction.

edu.uptymez.com

 Suppose the conductors are separated by a distance rin the plane of the paper.

        As each conductor is in the magnetic field produced by the other, therefore each conductor experiences a force

The current carrying conductor Y is placed in the magnetic field produced by conductor X

          Therefore force act on the conductor Y.  The magnitude of the magnetic field at any point P on the conductor Y due to current I, in the conductor X is

edu.uptymez.com

By  right  hand  grip rule ; the  direction of  B  is  perpendicular  to the  place  of the  paper  and  is  directed  inwards.

 Now conductor Y carrying current edu.uptymez.com is placed in the magnetic field edu.uptymez.comproduced by conductor X

         Therefore force per unit length of conductor  Y will experience a force edu.uptymez.com given by

edu.uptymez.com

 edu.uptymez.com= edu.uptymez.com

 According to FLHR, force edu.uptymez.com on conductor Y acts in the place of the paper perpendicular to Y and is directed towards to the conductor X.

Similarly, the Force on conductor X per unit length is   edu.uptymez.com= ByI1L

But

edu.uptymez.com

edu.uptymez.com

Hence when two long parallel conductors carry currents in the same direction they attract each other. The force of attraction per unit length is
edu.uptymez.com

 edu.uptymez.com

This shows that the attraction between two parallel straight conductors carrying currents in the same direction in terms of magnetic field lines of conductors

          It is clear that in the space between X and Y the two fields are in opposition and hence they tend to cancel each other

          However in the space outside X and Y the two fields assist each other. Hence resultant  field  nglish-swahili/distribution” target=”_blank”>distribution will be

 edu.uptymez.com

If  two straight  current  carrying  conductors of  unequal length  are  held parallel to each other  then force  on the  long  conductor  is  due to the   magnetic field  of the  short conductor

I1 = Current through short conductor

l = Length of short conductor

I2 = Current through long conductor

L = Length of long conductor

If r is the separation distance between these parallel conductors

Force on Long conductor = force on short conductor

edu.uptymez.com


Force on each conductor is the same in magnitude but opposite in direction (Newton’s third law)

 DEFINITION OF AMPERE 

Force between two current currying conductors per unit length

edu.uptymez.com

If  edu.uptymez.com And r =1m then

edu.uptymez.com

 Ampere

 Is  that  steady  current  which when it is  flowing  in  each  of  two infinitely  long, straight parallel  conductors  which  have  negligible  areas  of  cross – section  and  are  1m apart  in a vacuum, causes each conducts to  exert  a force  of  edu.uptymez.comN on each mete  of the  other. 

 WORKED EXAMPLES

       1. The  plane  of a  circular  coil  is  horizontal  it  has  20 turns  each of  8cm radius A current  of  1A flows  through it  which  appears  to be  clockwise from a point vertically  above  it. Find the  Magnitude  of the  magnetic  field  at the  centre of the  coil.

Solution
The  magnitude  of the  magnetic  field  at the  centre of the  coil  carrying  current  is  given by,
edu.uptymez.com

As the currents appears to be clockwise from appoint vertically above the coil the direction of the field will be vertically downward (By R.H.G.R)


2. A wire placed along the South-North direction carries currents of 5A from South to North. Find the magnetic field  due to a 1cm piece of wire at a point 200cm North-East from the place.

     Solution

edu.uptymez.com

By RHGR, The field is vertically vertical downwards

  3. A coil of radius 10cm and having 20 turns carries a current of 12A in a clockwise direction when seen from east. The coil is in North – South plane.  Find the magnetic field at the centre of the coil.                                                 

 Solution
The magnitude of the magnetic field at the centre of the coil

edu.uptymez.com

         The electron of hydrogen atom moves along a circular path of radius 0.5 x 10-10 with the uniform speed of 4 x 106 m/s.  Calculate the magnetic field produced by electron at the centre ( e= 1.6 x 10-9c)

Number the revolution made by the electron in 1 second is

                                       edu.uptymez.com

Current   = edu.uptymez.com

I =   1.27 X 1016 X 1.6 X10-19

                        1S

           I =     2.04 X 10-3A

 Magnetic field produced by the electron at the centre is

edu.uptymez.com

5.  A circular  coil  of  100 turns  has  a radius of  10cm and  carries  a current of  5A Determine  the  magnetic  field

(i)  At  the  centre  of  the  coil

(ii)  At a point  on the  axis  of  the  coil  at  a distance  of  5cm from the  centre  of the  coil.

Solution

(i)   Magnetic field  at the  centre  of the  coil is

edu.uptymez.com

edu.uptymez.com =   4edu.uptymez.com x 10-7 TA -1

                         N    = 100 turns

                         I = 5A

                          r = 10×10-2m

                        B = 4edu.uptymez.com x 10-7x 100 x S

                                          2 X 0.1

                                      B=   3.14 X10-3 T

                        edu.uptymez.com  The magnetic field of the centre of the coil  =   3.14 X10-3 T

(ii)    Magnetic  field  on the  axis  of the  coil  at  a  distance  X from the  centre is 

edu.uptymez.com

edu.uptymez.com = 4edu.uptymez.com x 10-7 TA -1

 N   = 100 turns

  I    = 5A

  r    = 10 x 10-2

  x    = 0.05m

edu.uptymez.com

6. An electric  current  I   is  flowing  in  a  circular  wire  of  radius  at  what  dose  from the  centre  on the  axis  of  circular wire  will the  magnetic field  be  1/8th of its  value  at  the  centre?

Solution
Magnetic field B at the centre of the circular coil is
edu.uptymez.com
Suppose at a distance X from the centre on the axis of the circular coil the magnetic field is  edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

        7. In  Bohr’s  model of  hydrogen  atom  the  electron  circulates  around  nucleus on a  path of radius  0.51Å at  a  frequency  of  6.8xedu.uptymez.com is  rev/second  calculate  the  magnetic field induction at the  centre of the  orbit.

Solution

 The circulating electron is equivalent to circular current loop carrying current I given by

     edu.uptymez.com

     edu.uptymez.com

    I = 1.6 edu.uptymez.com

     I = 1.1edu.uptymez.comA

Magnetic field at the centre due to this current is

edu.uptymez.com

edu.uptymez.com

                       edu.uptymez.com    = 14T

      8. A long straight wire carries a current of 50A. An  electron  moving at  107ms is  5cm from  the  wire

                                  edu.uptymez.com

 Find the Magnetic field acting on the electron velocity is directed

(i)    Towards the wire

(ii) Parallel to the  wire

(iii)  Perpendicular  to the  directions  defined  by  I and  ii

 Solution

The magnetic field produced by current carrying long wire at a distance r

 edu.uptymez.com

edu.uptymez.com

 edu.uptymez.com

 The field is directed downward perpendicular   to the plane of the paper

( i)    The velocity V1
 is towards the wire. The  angle between  VI  and  B is  900 force on  electron

F= BQVedu.uptymez.com

F = 2x 10-4 x 1.6×10-19x107x Sin 900

F = 3.2 x 10-16 N

(ii)  When  the  electron  is  moving  is  moving  parallel to the  wire ,angle  between  V2 and B is  again  90Ëš Therefore, force  is  again
3.2×10-16N

(iii)   When  the  electron is  moving perpendicular to the  directions  defined by  (i) and (ii) the  angle  between  V and B is O

F = O

       9. A solenoid  has  a length  of  1 .23 m and  inner diameter  4cm it  has  five  layers of  windings  of  850 turns each and  carries  a current of  5.57A. what  is  the  magnitude  of the  magnetic  field  at the  centre  of the  solenoid

Solution

The  magnitude  of the  magnetic  field at the  centre  of  a  solenoid  is  given  by
edu.uptymez.com

But
edu.uptymez.com

    10.   A  to void has a  core ( non –  ferromagnetic) of  inner  radius  20cm and  over  radius  25cm around which 1500 turns  of a wire  are  wound. If  current  in the  wire  is  2A

Calculate the magnetic field

(i)                  Inside  the  to void 

(ii)               Outside the  to void

Solution — go to next page… 

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *