FORM 6 PHYSICS: ELECTROMAGNETISM PART 3

Share this post on:

COERCITIVITY OF THE SAMPLE

Is the  value  of  reverse  magnetizing  force required to  wipe out  the  residual magnetism  in the  sample

          Now  H is  further  increased  in the  reversed direction until  point  d  is  reached where  the  sample  is  saturated  in the  revision direction  (edu.uptymez.com).

          If the  H is  now  reduced  to  zero, point e is reached and  the  sample again retain magnetic  flux  density (edu.uptymez.com)

          The  remaining part  of the  loop is  obtained  by  increasing current to  produce H in the  original  direction  .

The hysteresis loop results became the domains do not become completely unaligned when H is made zero.

          The  area  enclosed by the  hysteresis loop represents  loss in energy

          This energy appears in the material as heat.

HYSTERESIS LOSS

This is the loss of energy in the form of heat when a ferromagnetic material is subjected to cycles of magnetization.

Hysteresis loss is present in all those electrical machines whose iron parts are subjected to cycles of magnetization.

The obvious effect of hysteresis loss is the rise in temperature of the machine.

HYSTERESIS LOOP

Is the loop traced by the resultant B-H curve when the Iron – cored toroid is subjected to a cycle of magnetization.

          The  shape  and  size  of hysteresis loop largely depends upon the  nature  of the  material

          The  choice  of a  ferromagnetic  material per a  particular  application often depends upon the  shape and  size of the hysteresis loop

 (i)  The  smaller  the  hysteresis  loop  area  of a  ferromagnetic  material the smaller is the  hysteresis  loss

          The  hysteresis  loop  per  silicon steel has  a very small area.

         For  this  reason, silicon  steel is  widely  used per making transformer cores and  rotating  machines  which are  subjected  to rapid  reversals of  magnetization

(ii)  The hysteresis loop per hard steel indicates that this material has high retentivity and Coercivity.

           Therefore hard steel is quite suitable for making permanent magnets.

          But due  to the  large area of the  loop there  is a  greater hysteresis loss

For this reason, hard steel is not suitable for the construction of electrical machines

(iii)The  hysteresis loop for  wrought iron shows that  this  material  has  fairly  good residual  magnetism  and  Coercivity.

                Hence it is  suitable  for marking cores of  electromagnets

APPLICATIONS OF FERROMAGNETIC MATERIALS
Ferromagnetic material (E.g. iron, steel nickel, cobalt etc) are widely used in a number of applications

           The  choice  of  ferromagnetic  material   for a particular  for a particular application depends  upon its magnetic  properties such  as

(i)  Retentivity   

(ii)Coercivity

(iii)  Area of the  hysteresis loop

Ferromagnetic materials are classified as being either

(i)   Soft (soft iron)

(ii)   Hard (steel)

  Figure below shows the hysteresis loop for soft and hard ferromagnetic materials
edu.uptymez.com

          The  table  below gives the  magnetic properties of hard  and  soft ferromagnetic materials

Magnetic property

Soft

Hard

Hysteresis loop narrow Large area
Retentivity High High
Coercivity low high

 

edu.uptymez.com

(i)    PERMANENT MAGNETS

The permanent magnets are made for hard ferromagnetic materials (steel, cobalt, carbon steel)

           Since  these  materials have  high relativity  the  magnet is  quite  strong

          Due to their high Coercivity, they  are  unlikely  to be  demagnetized by  stray magnetic field

(ii)  TEMPORARY  MAGNETS / ELECTROMAGNETIC
The Electromagnets are made from soft ferromagnetic materials e.g. soft iron.

           Since these materials have low coercively they can be easily demagnetized.

          Due  to  high saturation  flux  density  they  make  strong magnets


(iii)   TRANSFORMER CORES

The transformer cores are made from soft ferromagnetic materials

           When a transformer is  in  use, its  core  is  taken through many  cycles  of  magnetization

           Energy is dissipated in the core in the form of heat during each cycle. The energy dissipated is known as hysteresis loss. And  is  proportional to the  area of  hysteresis loop

          Since the soft Ferromagnetic materials have narrow hysteresis loop (smaller loop areas) they are used for making transformer cores.

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *