FORM 6 PHYSICS: ELECTROMAGNETISM PART 5

Share this post on:

NUMERICAL
PROBLEMS

1.       (1)The magnetic moment of a magnet (10cm x 2cm x 1cm) is 1AM? What is the intensity of magnetization?

                           I = 5 X edu.uptymez.comA/m

2.       (2)An  iron rod of cross sectional  area  4edu.uptymez.com  is  placed with  its  length parallel to a magnetic  flied  of  intensity  1600 A/M the  flux  through  the  rod  is  4 x 10-4Wb what  is the  permeability  of the  material  of the  rod?

                          μ = 0.625 x10-3 Wb A -1 m-1

3.      (3) A toroid winding carrying a current of 5A is wound with 300turns/miter of core. The  core  is  Iron  which has a  magnetic permeability of  5000Mo under  the  given  conditions

Find   (i) the magnetic intensity H

          (ii) Flux density B

          (iii)  Intensity of magnetization I

i)   1500AT/m

ii)   9.43T

iii)  7.5 X106A/m   

4.    (4)A specimen of  Iron is  uniformly  magnetized  by a magnetizing field of 500 A/m. if magnetic induction in  the specimen  is  0.2Wb/m2, find the  relative  permeability and  susceptibility

Xm = 317.5

Mr = 318.5 

5.       Consider  a toroid  of  1000 turns  and  mean radius  25cm. what is  the  B- field  in the  toroid if there is a  current of  2A?

What will be the field when the toroid is filled with Iron per which μ = 100H/m?

            edu.uptymez.com= 1 .6 x 10 -3

             B = 0.16T

6.       An  Iron  of  volume  10-4m3 and  relative  permeability 1000 is  placed  inside  a long  solenoid  wound  with  storms/cm. if  a current of  0.5A  is  passed through the   solenoid, find  the  magnetic moment of  the  rod.

M = 25Am2

7.      The flux through a certain toroid clangs from 0.65m Wb to 0.91M Wb when Air core is replaced by another material. What are

i)                     The  relative  permeability

ii)                  Absolute  permeability  of  the  material

edu.uptymez.com = 1. 4

μ= 5.6 x10-7H/m

8.       Answer  the  following  Questions

a)       Why does a paramagnetic sample display greater magnetization (per the same magnetizing field) when cooled?

b)      Why is diamagnetism, in contrast almost independent of temperature?

c)       Distinguish  between  a soft  and a hard  magnetic  material, giving  an  example  of  soft magnetic materials are  those  which  can  easily be magnetized but do  not retain  their   magnetism (retentively )  

           An  example  of  soft  magnetic  material

Is soft Iron i.e. Iron in a reasonably pure state. It is otherwise known as wrought iron

 Hard magnetic material

Are  those  which are  difficultly  to magnetic  but  once  magnetized, can  retain  the  magnetism per  long

           These  are  usually used  making permanent magnetic

          An example  of  hand  magnetic  material  is  steel which  consists of  iron and a  small % of  carbon


MOTION OF CHARGED PARTICLE IN UNFORM MAGNETIC FILED  

Consider a charged  particle  of  charge +Q and  mass M  moving  with a  velocity V in the  plane  of  the  paper.

           Suppose this  charged particle  enters a uniform  magnetic filed  B  which is  perpendicular  to the  plane of  the  paper and  directed outward

          Clearly the  entry of the  charged  particle is at right angles to the  magnetic field

The force i.e. magnetic force Fm on the charged particle is given by

Fm = BQV

The magnetic force Fm acts at right angle to the plane containing   V      and   B

On entering the magnetic field at M the charged particle experiences a force of magnitude  edu.uptymez.com  and is deflected in the direction shown

          This  force  is at  right angle  to the  direction of  motion of the  charge particle  and  therefore, cannot  change  the  speed of  charge  particle it  only charge  its  direction of  motion

           A  moment  later, then the  particle reaches point N  the  magnitude  of  force  Fm  acting on  it is the  same as it  was  at  M  but  the  direction of  force  is  different (Fm is  still  perpendicular to V  )

           Thus the  force  is  perpendicular to the  direction of  motion of the  charged particle  at  all times and  has  a constant  magnitude

          The  magnetic  force  does not  change  the  speed or  kinetic  energy of the  charge  particle  it only charges the  direction of the  charged  particle

           When the moving charged particle is inside the uniform magnetic field, it moves along a circular path.

When the initial velocity of the particle is parallel to the magnetic field

                         edu.uptymez.com = 00

 From

Fm = BQVedu.uptymez.com

Fm = BQVedu.uptymez.com

        Fm = 0

 Thus in  this  case  the  magnetic field does not  exert  any  force  on the  charge particle

           Therefore  the  charged particle  will continue to  move  parallel to the  magnetic field  then  edu.uptymez.com  =  1800

edu.uptymez.com

           Therefore, the particle will continue to the move in the original direction.

When the initial velocity of the particle is perpendicular to the magnetic field edu.uptymez.com =900

From

            Fm = BQVedu.uptymez.com
Max. Value   Fm = BQV

 PARAMETERS OF MOTION

 A force of constant magnitude edu.uptymez.com always acts perpendicular to the direction of motion of the charged particle.

          Therefore , edu.uptymez.com provides the necessary centripetal force  edu.uptymez.comto more  the  charged particle in a  circular path  in the  circle  of  radius  r  perpendicular  to the  field

i)                    RADIUS OF  PATH

The acceleration of a particle moving along a circular path of radius r is given by

                           edu.uptymez.com

                          edu.uptymez.com

                        edu.uptymez.com

                        edu.uptymez.com

                             edu.uptymez.com

edu.uptymez.com

For  a given charge  mass and  magnetic field  r edu.uptymez.com V. this  means that fast particles move  in  large  circles and  slow ones in  small  circles.

ii)                   TIME PERIOD

The  time  taken by the  charged particle to complete one  circular  revolution in the  magnetic field  is  its  Time  period T

From

edu.uptymez.com

edu.uptymez.com

                   edu.uptymez.com

                  edu.uptymez.com

               edu.uptymez.com

edu.uptymez.com

Thus  Time  period of the  charged particle  is  independent of the  speed (V)  and  the  radius of the  path

           It  only  Depends on the  magnitude  of B and  charge  to  mass ratio edu.uptymez.com of the  particle .

FREQUENCY

 The  number of  circular  revolutions made  by  the  charged  particle  in  one  second is  its  frequency f

                                    f = edu.uptymez.com

                                     f = 1edu.uptymez.com

edu.uptymez.com

There Frequency of the charged particle is also independent of speed (V) and radius (r) of the path

ANGULAR
FREQUENCY

From

           edu.uptymez.com  =2πf

But

edu.uptymez.com

Then

edu.uptymez.com

edu.uptymez.com

 Again  Angular  frequency  of the  charged particle is  independent  of  the  speed (V) and  radius (r)  of the  path..

Since T, f and  edu.uptymez.com of a charged particle moving in a magnetic field are independent of its speed (V) and the radius (r) of the path.

          In fact all the  charged particles with  same Q/M  and  moving in a  uniform magnetic field  B  will have  the  same  value of T, f and w

Share this post on:

Leave a Reply

Your email address will not be published. Required fields are marked *