MATHEMATICS FORM 1 – FRACTIONS

Share this post on:

A fraction is a number that can be written in the form of edu.uptymez.com
Where a and b are intergers and  b edu.uptymez.com 0
edu.uptymez.com
The number which is written on top of fraction is called Numerator and the bottom is called denominator e.g

edu.uptymez.com

          Type of fraction

(i)   Proper fractions

–      A proper fraction  is the one in which the numerator is less than denominator

e.g.   edu.uptymez.com etc

(ii)   Improper fractions

–      These are the ones which the numerators are greater than the denominator

edu.uptymez.com etc

(iii)   Mixed fractions or mixed numbers

–      These are the ones formed after improper fractions are divided complete
e.g.  edu.uptymez.com = 2edu.uptymez.com , 6edu.uptymez.com , 9edu.uptymez.com

(iv)   Equivalent fractions

These are two or more fractions that can be simplified to equal lowest fraction.

edu.uptymez.com

 
 

Example: Change the following into mixed numbers

    1.      edu.uptymez.com =  7edu.uptymez.com

    2.      edu.uptymez.com = 3

    3.      edu.uptymez.com =  6edu.uptymez.com

 
 

Fractions can be represented on number lines

e.g. represent edu.uptymez.com on a number line.

edu.uptymez.com
   

Exercise  1

1.      (i)Which of the following are: –

(a)  Proper fractions

(b)  Mixed fractions

(c)  Improper fractions

(ii) List four equivalent fractions

(i)                edu.uptymez.com

(ii)             edu.uptymez.com

(iii)           edu.uptymez.com

(iv)           edu.uptymez.com

(v)              edu.uptymez.com

(vi)           edu.uptymez.com

(vii)         edu.uptymez.com

(viii)      edu.uptymez.com

(ix)           edu.uptymez.com

(x)      edu.uptymez.com

(xi)    edu.uptymez.com

(xii)     edu.uptymez.com

(xiii)      edu.uptymez.com

(xiv)   edu.uptymez.com

(xv)      edu.uptymez.com

(xvi)    3edu.uptymez.com


Solution

(a)   Proper fraction

edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com

(b)  Improper fraction

edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com , edu.uptymez.com

(c)  Mixed fraction

1edu.uptymez.com , 3edu.uptymez.com

Four equivalent fractions are:-

1.      edu.uptymez.com edu.uptymez.com  edu.uptymez.com edu.uptymez.com ,  edu.uptymez.com   edu.uptymez.com  edu.uptymez.com

2.      edu.uptymez.com edu.uptymez.com  edu.uptymez.com edu.uptymez.com ,  edu.uptymez.com   edu.uptymez.com  edu.uptymez.com

 3.      edu.uptymez.com edu.uptymez.com  edu.uptymez.com edu.uptymez.com ,  edu.uptymez.com   edu.uptymez.com  edu.uptymez.com

 4.      edu.uptymez.com edu.uptymez.com  edu.uptymez.com  edu.uptymez.com ,  edu.uptymez.com  edu.uptymez.com  edu.uptymez.com

 
 

2.      Write the following fractions in words

(a)   edu.uptymez.com 

edu.uptymez.com three quarters

(b)  edu.uptymez.com 

edu.uptymez.com A half

(c)  edu.uptymez.com

edu.uptymez.com A third

(d)    edu.uptymez.com 

edu.uptymez.com Five over six

(e)  edu.uptymez.com 

edu.uptymez.com Nine over Ten

(f)   edu.uptymez.com 

edu.uptymez.com  A quarter

2.      Write the name of the fraction of the shaded part in figures ABCD and EFGH

      edu.uptymez.com

edu.uptymez.com edu.uptymez.com = one over three (A third)

Which is a proper fraction

 
 

               E                                                                    H

edu.uptymez.com 

 
 

 
 

 
 

 
 

 
 

              F                                                                      G

edu.uptymez.com edu.uptymez.com = one over four (A quarter)

Which is a proper fraction

 
 

Comparison of fraction

Fraction can be compared by using two methods

(i)   Number line

(ii) L.C.M of the denominators


(I)  Number line

Example 1. show  edu.uptymez.com  and edu.uptymez.com on a number line and then find which is greater than the other

                edu.uptymez.com

            edu.uptymez.com edu.uptymez.com  edu.uptymez.com edu.uptymez.com

 
 

Example 2. Which is greater between  edu.uptymez.com  and edu.uptymez.com?

Solution:

               edu.uptymez.com

                edu.uptymez.com edu.uptymez.com  edu.uptymez.com edu.uptymez.com

(II)   L.C.M of the denominators

Determine which fraction is greater between edu.uptymez.com  and edu.uptymez.com

Solution

1st find the L.C.M of 5 and 7

edu.uptymez.com L. C. M of 5 and 7 = 35

2nd multiply by that L. C. M each fraction

edu.uptymez.com edu.uptymez.com edu.uptymez.com 35  = 14

edu.uptymez.com edu.uptymez.com edu.uptymez.com 35  = 20

Conclusion, check the one which has given us bigger number after multiplication with L.C.M

                          edu.uptymez.com  edu.uptymez.com  edu.uptymez.com

Example: which is greater  edu.uptymez.com or  edu.uptymez.com ?

Solution:

L.C.M = 44

edu.uptymez.com edu.uptymez.com edu.uptymez.com 44

            =99

edu.uptymez.com edu.uptymez.com edu.uptymez.com 44

            =12

:- edu.uptymez.com  edu.uptymez.com edu.uptymez.com

Operations on Fractions

Addition and Subtraction of Fraction

NOTE: 
1 .Add the numerator together if each fraction has the same denominator.

2. If the fraction has different denominator, you must find the smallest number that each denominator divides into exactly. (LCM)

3. When adding fractions, do not add the denominator.

Example:

Evaluate the following fractions

edu.uptymez.com

edu.uptymez.com

Multiplication

NOTE: 1. Before multiplying a number convert mixed number into improper fractions
           2. Multiply the numerators and multiply the denominator.
Examples:

edu.uptymez.com

edu.uptymez.com

Dividing Fractions

1. When dividing fractions invert the second fraction then multiply the first fraction by the inverted fraction.

 
edu.uptymez.com
2. Before dividing number convert mixed numbers into improper fraction.
edu.uptymez.com

 

edu.uptymez.com

DECIMALS AND PERCENTAGES

Are fractions of tenth, they are written using a point which is a result of division of a normal fraction

E.g. 0.34, 0.5, 0.333——–

In the fraction 0.2546 the place values are

Ones

Tenth

Hundredths

Thousandths

 
 

Ten Thousandths

0

2

5

4

 
 

6

edu.uptymez.com

Decimals can be converted into fractions and vice versa

E.g. Change edu.uptymez.com in to decimals

Solution:

        edu.uptymez.com    = 0.75

This fraction which ends after dividing is called terminating fraction. Other fractions do not end, these ones are called recurring or repeating decimals.

E.g.   edu.uptymez.com

edu.uptymez.com

Conversion of Repeating decimal into fractions

edu.uptymez.com

Solution:

            0.3 = 0.333…….

           edu.uptymez.com

Subtract (i) from (ii)

edu.uptymez.com

9t   =  3.0

edu.uptymez.com = edu.uptymez.com
  t = edu.uptymez.com

 
 

Exercise 1

Insert  edu.uptymez.com  or  edu.uptymez.com  between each pair of fractions questions 4 to 12

        1.       edu.uptymez.com   ,    edu.uptymez.com

Solution

L.C.M  =  3

            edu.uptymez.com edu.uptymez.com 3  = 2

            edu.uptymez.com edu.uptymez.com 3  = 1

          edu.uptymez.com edu.uptymez.com

      2.            edu.uptymez.com , edu.uptymez.com

Solution

L.C.M  =  63

edu.uptymez.com  edu.uptymez.com  63 = 7

edu.uptymez.com  edu.uptymez.com  63 = 9

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

3.      edu.uptymez.com       edu.uptymez.com

Solution

edu.uptymez.com  edu.uptymez.com  12 = 10

edu.uptymez.com  edu.uptymez.com 12 = 9

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

4.      edu.uptymez.com   ,    edu.uptymez.com

Solution

edu.uptymez.com  edu.uptymez.com  20 = 16

edu.uptymez.com  edu.uptymez.com  20 = 15

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

5.      edu.uptymez.com  ,     edu.uptymez.com

Solution

L.C.M of 20 and 4  = 80

edu.uptymez.com  edu.uptymez.com  80 = 60

edu.uptymez.com  edu.uptymez.com 80 = 140

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

6.      edu.uptymez.com  ,     edu.uptymez.com

Solution

L. C. M of 4 and 4  =  4

edu.uptymez.com  edu.uptymez.com  4 = 1

edu.uptymez.com  edu.uptymez.com  4 = 3

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

      7.      edu.uptymez.com   ,    edu.uptymez.com

Solution

L. C. M of 5 and 6  = 30

edu.uptymez.com  edu.uptymez.com  30 = 12

edu.uptymez.com  edu.uptymez.com  30 = 5

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

       8.      edu.uptymez.com   ,    edu.uptymez.com

Solution

L. C. M of 9 and 6  = 18

edu.uptymez.com  edu.uptymez.com  18 = 16

edu.uptymez.com  edu.uptymez.com  18 = 15

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

      9.      Which numbers are denominators in each of the following fractions?

(a)    edu.uptymez.com   16 is the denominator.

(b)    edu.uptymez.com   93 is the denominator

(c)    3edu.uptymez.com    5 is the denominator

      10.  Which numbers are numerators in each of the following fractions?

(a)    edu.uptymez.com   Numerators is 3

(b)    3edu.uptymez.com    Numerators is 4

(c)    edu.uptymez.com    Numerators is 12

           edu.uptymez.com

        12.  Which is greater

(a)        edu.uptymez.com   or     edu.uptymez.com

Solution

Find the L.C.M of 5 and 4  = 20

   edu.uptymez.com  edu.uptymez.com  20 = 12

   edu.uptymez.com  edu.uptymez.com  20 = 15

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

(b)  edu.uptymez.com   or     edu.uptymez.com

Solution

Find the L.C.M of 3 and 2  = 6

   edu.uptymez.com  x  6 = 4

   edu.uptymez.com  x  6 = 3

edu.uptymez.com edu.uptymez.com   edu.uptymez.com    edu.uptymez.com

 
 

 
 

      13.  What is the condition for a fraction to be called improper?

The numerator is bigger than the denominator.

      14.  Change the following improper fractions into mixed numbers

(a) edu.uptymez.com   =  1edu.uptymez.com

(b)  edu.uptymez.com  =  4edu.uptymez.com

(c)    edu.uptymez.com  =  3edu.uptymez.com

(d)   edu.uptymez.com  =  1edu.uptymez.com

16   15. Change the following  mixed numbers into improper fractions

(a)   3 edu.uptymez.com  

Solution

edu.uptymez.com        

 edu.uptymez.com

edu.uptymez.com  =  edu.uptymez.com

(b)   15 edu.uptymez.com  

Solution

edu.uptymez.com      

 edu.uptymez.com

edu.uptymez.com  =  edu.uptymez.com

(c)    24 edu.uptymez.com  

Solution

edu.uptymez.com      

   edu.uptymez.com

edu.uptymez.com  =  edu.uptymez.com

 3.3 PERCENTAGES

Percentages are fractions expressed out of 100. That is – are the ones whose denominator is one hundred, they are denoted by (%) called percent

     Example: 12% means 12 edu.uptymez.com edu.uptymez.com   = edu.uptymez.com

70% = edu.uptymez.com   etc.

Examples: 1. convert the following percentage into fraction
(i)   65% 
(ii)75%
(iii) 12 edu.uptymez.com %

Solution

(i)                65%

65 edu.uptymez.com  edu.uptymez.com   = edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com = edu.uptymez.com

(ii)             75%

75    edu.uptymez.com edu.uptymez.com   = edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com = edu.uptymez.com

 
 

(iii)   12 edu.uptymez.com %

12edu.uptymez.com  edu.uptymez.com   = edu.uptymez.com edu.uptymez.com edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com  12 edu.uptymez.com %  = edu.uptymez.com

2. Change

(i)  40% into decimal

(ii)  35% into fractions

(iii)     0.125 into percentage

Solution
(i)  40%  =  edu.uptymez.com  =  edu.uptymez.com

edu.uptymez.com = 0.4

(ii)   35%
35    edu.uptymez.com  edu.uptymez.com   = edu.uptymez.com 

edu.uptymez.com = edu.uptymez.com

          (iii)   0.125

Solution

0.125  =  edu.uptymez.com edu.uptymez.com 100%

edu.uptymez.com = 12.5%

3. Change the recurring decimals into fractions

             (i)    0edu.uptymez.com

Solution

Let x = 0.edu.uptymez.com ……………………….. (i)

100x  = 21.edu.uptymez.com ……………………. (ii)

Take away equation (i) from (ii)

100x  = 21.edu.uptymez.com

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com x = edu.uptymez.com

     (ii)      edu.uptymez.com   

Solution

Let x = 0.9edu.uptymez.com ……………………….. (i)

10x  = 9.edu.uptymez.com …………………………. (ii)

100x  = 93.3 ………………………(iii)

Take  equation (ii) away  from equation (iii)

100x  = 93.3

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com  = edu.uptymez.com    edu.uptymez.com

edu.uptymez.com x = edu.uptymez.com

         (iii)  0.edu.uptymez.com6edu.uptymez.com

Solution

Let x = 0.edu.uptymez.com6edu.uptymez.com ………………………….. (i)

1000x  = 567.567 ……………………. (ii)

Take away equation (i) from (ii)

1000x  = 567.567

X  = 0.567

edu.uptymez.com     edu.uptymez.com

edu.uptymez.com x = edu.uptymez.com

      (iv)      0.edu.uptymez.com35edu.uptymez.com

Solution

Let x = 0.edu.uptymez.com35edu.uptymez.com……………………….. (i)

10000x  = 1352.1352 ……………………. (ii)

Take  (ii) – (i)

10000x  = 1352.1352

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com x = edu.uptymez.com

     (v)      0.edu.uptymez.com1edu.uptymez.com

Solution

Let x = 0.edu.uptymez.com1edu.uptymez.com ………………………….. (i)

1000x  = 219.219 ……………………. (ii)

Take away equation (i) from (ii)

1000x  = 219.219

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com x = edu.uptymez.com

           (vi)      0.edu.uptymez.com8edu.uptymez.com

Solution

Let x = 0.edu.uptymez.com8edu.uptymez.com………………………….. (i)

1000x  = 186.186 ……………………. (ii)

Take away equation (i) from (ii)

1000x  = 186.186

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com x = edu.uptymez.com

     (vii)      0.edu.uptymez.com63edu.uptymez.com

Solution

Let n = 0.edu.uptymez.com63edu.uptymez.com ………………………….. (i)

10000n  = 8634.8634 ……………………. (ii)

Take away equation (i) from (ii)

10000n  = 8634.8634

edu.uptymez.com = edu.uptymez.com

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com n = edu.uptymez.com

         (viii)     0.7edu.uptymez.com

Solution

Let x = 0.7edu.uptymez.com ……………………….. (i)

10x  = 0.7edu.uptymez.com …………………………. (ii)

1000x  = 792.edu.uptymez.com ………………………(iii)

Take away equation (ii)   from equation (iii)

100x  = 792.edu.uptymez.com

1000x – 10x = 792.edu.uptymez.com – 7.edu.uptymez.com
990x = 785

 edu.uptymez.com 

edu.uptymez.com x = edu.uptymez.com

 
 

      (ix)      0.edu.uptymez.com4edu.uptymez.com

Solution

Let y = 0.edu.uptymez.com4edu.uptymez.com ………………………….. (i)

1000y  = 645.edu.uptymez.com4edu.uptymez.com ……………….. (ii)

Take away equation (i) from (ii)

1000y – y = 645-edu.uptymez.com4edu.uptymez.com 

999y=645

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com y = edu.uptymez.com

 
 

      (x) 0.edu.uptymez.com

Solution

Let b = 0.edu.uptymez.com ………………………….. (i)

100b  = 64.edu.uptymez.com  ……………………. (ii)

Take away equation (i) from (ii)

100b – b = 64.edu.uptymez.com-0.edu.uptymez.com 
  99b = 64

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com b = edu.uptymez.com

     (xi)0.edu.uptymez.com2edu.uptymez.com

Solution

Let m = 0.edu.uptymez.com2edu.uptymez.com………………………….. (i)

1000m  = 627.edu.uptymez.com2edu.uptymez.com……………………. (ii)

Take away equation (i) from (ii)

1000m – m = 627.edu.uptymez.com2edu.uptymez.com– 0.edu.uptymez.com2edu.uptymez.com
999m = 627

edu.uptymez.com  = edu.uptymez.com

edu.uptymez.com m = edu.uptymez.com 

4. In question (i) to (v) change the fractions into decimals.

 edu.uptymez.com

Solution

1 ÷ 3 =

edu.uptymez.com  = 0.33

     ii. edu.uptymez.com

Solution

5 ÷ 6 =

edu.uptymez.com  = 0.833

     iii. edu.uptymez.com

Solution

4 ÷ 11 =

edu.uptymez.com  = 0.3636

     iv.  edu.uptymez.com

Solution

1 ÷ 9 =

edu.uptymez.com  = 0.111

       v. edu.uptymez.com

Solution

7 ÷ 13 =

edu.uptymez.com  = 0.538461

edu.uptymez.com

Solution

Let b = 0.edu.uptymez.com2edu.uptymez.com ………………………….. (i)

1000b  = 123.edu.uptymez.com2edu.uptymez.com……………….. (ii)

Take  equation (i) away from equation (ii)

1000b – b   =  123.edu.uptymez.com2edu.uptymez.com – 0.edu.uptymez.com2edu.uptymez.com

999b = 123

edu.uptymez.com – edu.uptymez.com

 b  = edu.uptymez.com


 Operations on Decimals

Operations with decimals are similar to operations with whole numbers:

 
 

Addition

 
 

Note: The decimal points must be in line, put zeros at the end to give the same number of decimal places in each number.

 
 

edu.uptymez.com

 
 

edu.uptymez.com

 
 

Multiplication

 
 

Note:

 
 

  1. When multiplying decimals the answer must have the same number of decimal places as the total number of decimal places in the number being multiplied.
  2. First carry out the multiplication in the usual way, without any decimal points, then put the point to the total decimal places.

edu.uptymez.com

 
 

edu.uptymez.com

Division

 
 

Note:

 
 

It is not easy to divide by a decimal, so you multiply each number by a power of 10 in order that you are dividing by a whole number.

 
 

Example:- (i) Find (a) 68.32 ÷ 1.4

 
 

                                 (b) 9.66 ÷ 0.23

 
 

Solution

 
 

(a)   68.32 ÷ 1.4 =    68.32 x 10 ÷ 1.4 x 10

 
 

                             682.2÷14

 
 

                By long division

 edu.uptymez.com
Therefore 68.32 ÷ 1.4 = 48.8
(b)

 edu.uptymez.com

Therefore 9.66 ÷ 0.23 = 42

 edu.uptymez.com

(c) 7.32  1.2  = 7.32 x 10  1.2 x 10

 
 

73.2

 
 edu.uptymez.com

t
Therefore 7.32 ÷ 1.2 = 6.1

 edu.uptymez.com

          Mariam was given 20,000 shillings by her father, she spent 48% of it to buy shoes. How much money remained.

Solution

edu.uptymez.com  edu.uptymez.com 20,000

           
=9,600

20,000

– 9,600

11,600

edu.uptymez.com The remained money was 11,600/=

edu.uptymez.com
edu.uptymez.com

PERCENTAGES APPLIED TO REAL LIFE PROBLEMS
The examples below show the wide range of application
Examples:-
1. In one week, Flora earned 48,000/=, she spent 4,000/= on travel to and from work. What percentage of her money was left?
Solution:
edu.uptymez.com
Percentage of a quantity
When finding a percentage of a quantity, it is often helps to change the percentage to a decimal and multiply it by the quantity.
Example:- Find (a) 20% of 840,000
                         edu.uptymez.com
edu.uptymez.com
Percentage increase and Decrease
There are two steps to calculate percentage increase (or decrease)
Example: In 1975 the population of a village was 90. It increased by 30% the following year. What was the population in the year 1976?
edu.uptymez.com                        

edu.uptymez.com

Share this post on: