BAM FORM 5 – FUNCTIONS

Share this post on:

GRAPHS OF FUNCTIONS

A) Linear function

If the function of the form f (x) = mx +c

M = slope

C = constant

        edu.uptymez.com                                                                                                                                                                                                                                    


Examples
1.) Draw graphs of the following and give their domain and range

f (x) = 3x +1

Solution

f (x) = 3x+1

Intercept

When x = 0, y = 1
y = 0, x = edu.uptymez.com
edu.uptymez.com                                                                                                               

edu.uptymez.comDomain =   edu.uptymez.com

       Range =    edu.uptymez.com

2) f(x) = 6 
edu.uptymez.com
Domain   =  edu.uptymez.com

   Range  =  edu.uptymez.com

  Note

   f(x) = a  is called the constant function

Exercise

        1)     Given that f(x)=x2  and g(x)=x

       Find the domain and range of

                a) f (x) + g(x

                b) f (x) – g (x)

               c.)  f (x) g (x)

         d) f (x) – g(x)

2)    Draw graphs of

          a.)   f(x)= -3x+1

         b.)   f(x) = 3x-1

        edu.uptymez.com
 

       d.)   f( x ) = ½ – x

 Solution

1a) f(x) +g(x)  

     y = x2 + x

TURNING POINTS OF A QUADRATIC FUNCTION


Step function

Are functions which are not continuous.

Example

Draw the graphs of the following function give its

Domain and range

f(x) =   edu.uptymez.com

Solutions

 edu.uptymez.com

   Domain = edu.uptymez.com                                                                                                                                                                                         

    Range =  edu.uptymez.com

C) QUADRATIC FUNCTIONS

Is the function of the form

edu.uptymez.com
Where a edu.uptymez.com

Example

 Draw the graph of

edu.uptymez.com
 

Solution

x -2 -1 0 1 2 3 4 5
Y 12 6 2 0 0 2 6 12

 

edu.uptymez.com

edu.uptymez.com                                                                                                                                                                                                                                                                                                                                  

Exercise

1. Draw the graphs of the following functions give the domain ad the range

i) f (x)= edu.uptymez.com

ii) f(x)= edu.uptymez.com              

ii) f(x)  = edu.uptymez.com

2. Draw graphs of the following functions

a)    i)   edu.uptymez.com 

b)   ii)  edu.uptymez.com 

c)   iii)   f(x)= x2-x

d)  iv)    g(x)= -4x2-1

Solutions

f (x ) =  edu.uptymez.com


edu.uptymez.com                                                                                  

   Domain =   edu.uptymez.com   

   Range =  edu.uptymez.com       

TURNING POINTS OF QUADRATIC FUNCTION

Given the function

f(x)=ax2+bx+c  where a, b and c are constants

By completing the square

      edu.uptymez.com 

 y = edu.uptymez.com 

= edu.uptymez.com

= edu.uptymez.com 

    y =  edu.uptymez.com

    edu.uptymez.com 

(Case :1)

If  a edu.uptymez.com then a( x + edu.uptymez.com)2≥0 

Therefore

edu.uptymez.com 

edu.uptymez.comThe function is minimum

When y = edu.uptymez.com and edu.uptymez.com


(Case 2)

If a edu.uptymez.com then a [x +edu.uptymez.com] 2
edu.uptymez.com

edu.uptymez.comy = edu.uptymez.com   

edu.uptymez.comThe function maximum when  edu.uptymez.com    and  edu.uptymez.com                                                        

Note

The maximum and the minimum points are the turning points of quadratic function

Examples (1)

Find the turning points of the function

edu.uptymez.com     y = x2 – 3x + 2

    edu.uptymez.com 

    edu.uptymez.com

    edu.uptymez.com    

Therefore x = 3/2 , y = – ¼

Therefore turning point = (edu.uptymez.com ,  -1/4)

Alternatively:

x = -b/2a , y = edu.uptymez.com

a = 1, b = -3, c = 2

Therefore x = 3/2

                 y = -1/4

Example 2

Find the turning point of the function

edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

 edu.uptymez.com  

edu.uptymez.com 

x = 2, y = -1

Turning point = (2, -1)

Example 3

Find the domain and range of the function

p(x)=-x2+4x-5 

Solution

Domain =  edu.uptymez.com 

  Range =   edu.uptymez.com                

 edu.uptymez.com

 edu.uptymez.com

edu.uptymez.com = edu.uptymez.com                 

Range

         edu.uptymez.com

Exercise

1)     Find the turning points of the following

         a.)   f (x) = x2 -4x + 2

         b.)   f (x) = x2 + 8x + 5

         c.)   f (x) = 5 -6x – 9 x2

         d.)   f (x) = 3x2 + 8x – 1

         e.)   f (x) = x2 -4x – 5

2)     Find the domain and range

         a.)   f (x) = x2 – 4x + 2

         b.)   f (x)= 3x2 +8x – 1

          c.)   f (x) = -5 – 6 – 9x2

          d.)   f (x) = 2 –x – x2

          e.)   f (x) = x2 – 4x +2

Solution

       a)     edu.uptymez.com

edu.uptymez.com         

edu.uptymez.com                   

            edu.uptymez.com                    

Turning point= x = 2, y = -2

 Turning point=(2,2)

        b)     edu.uptymez.com 

Solution

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

x = – 4

And

y = – 11

Therefore Turning point = (-4, -11)

       c)     f ( x) = 5- 6x- 9x2

       Since

    edu.uptymez.com 

        edu.uptymez.com 

        edu.uptymez.com 

        edu.uptymez.com  

       edu.uptymez.com

          y = -4 , x = 1/3

         Turning point = ( edu.uptymez.com, – 4)

        d)     f (x) = 3x2 +8x – 1

                Solution

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

x = -4/3 ,  y  = -17
Turning point =(-4/3, -17)

Alternatively

x = -b / 2a

x = -8/2 [ 3]

x = -8/6

x = -4/3

x = -4/3

edu.uptymez.com         

    = edu.uptymez.com

    edu.uptymez.com 

            y = -19/3

edu.uptymez.com 

Turning point = edu.uptymez.com

       e)     f (x) = x2 – 4x -5

Solution

edu.uptymez.com  

edu.uptymez.com 

edu.uptymez.com 

edu.uptymez.com 

x= 2, y = -9

Turning point =(2,-9)
Alternatively

x = -b/2a

x = -[ -4 ][ 1]

x = 4/2

x = 2

edu.uptymez.com 

= edu.uptymez.com 

= edu.uptymez.com

= edu.uptymez.com

 = -9

edu.uptymez.comTurning point = (2,-9)

2 a) edu.uptymez.com  

Domain =   edu.uptymez.com

     Range =  edu.uptymez.com   

     y ≥ -8/4

     y ≥ -2

    Range = edu.uptymez.com 

Domain = edu.uptymez.com 

    Range   = edu.uptymez.com

b) f (x) = 3x2 + 8x – 1

Solution:

Domain = edu.uptymez.com

Range    = edu.uptymez.com 

y ≥ 19/3

Range ={ edu.uptymez.com}

Domain = edu.uptymez.com 

Range = edu.uptymez.com 

C) f (x) = 5 – 6x – 9x2

Solution

y = -9x2 – 6x + 5

Domain = { x : x ┇IR}

Range = { y : y ≤ edu.uptymez.com }           

y edu.uptymez.com

edu.uptymez.comDomain =  edu.uptymez.com

Range =  edu.uptymez.com

Using intercepts and turning points to sketch the graph of quadratic functions

Example

Sketch the graph of

edu.uptymez.com 

Solution

y – Intercept

When

x = 0, y = -2

x- Intercept

When

y= 0, x2– 4x – 2 = o

x = edu.uptymez.com             

x =   edu.uptymez.com   

x = edu.uptymez.com                

x = edu.uptymez.com

x = edu.uptymez.com

x = edu.uptymez.com or edu.uptymez.com

  x= 4.5    OR    x = -0.5

Turning point

x = edu.uptymez.com

x = edu.uptymez.com 

x = 2

edu.uptymez.com 

edu.uptymez.com 

= edu.uptymez.com

              = – 6

Turning points =  (2,-6.)

Since a edu.uptymez.com the function has a minimum value therefore the graph opens upwards

edu.uptymez.com

Exercise

Sketch the graphs of the following functions using intercepts and turning points

edu.uptymez.com 

Solution
edu.uptymez.com 

y intercept

When x = 0,   y = -5

x intercept

When y = 0,  -9x2 -6x +5 = 0

      x = edu.uptymez.com

x = edu.uptymez.com

x = edu.uptymez.com

          edu.uptymez.com

     edu.uptymez.com

edu.uptymez.com 

Either x

     = edu.uptymez.com  or  edu.uptymez.com

x = 20.7/-8  or  -8.7/-18

x = -1.2 or x = 0.5

Turning points

x= -b/2a

x = – [-6/2 [-9]

x =- 1/3 or – 0.3

y = edu.uptymez.com          

y = edu.uptymez.com 

y = edu.uptymez.com

y = edu.uptymez.com

y= 6

     Turning points = (-0.3 , 6)

Since a edu.uptymez.com the function has a maximum value therefore the graph opens down wards
edu.uptymez.com                                                                                                                                                                                                                                  


2) f(x) = 3x2 + 8x -1

         Solution

      edu.uptymez.com 

y – Intercept

When x=0, y = -1

x – Intercept

When  y = 0,   3x2 +8x-1=0

x = edu.uptymez.com

x = edu.uptymez.com

x = edu.uptymez.com

x = edu.uptymez.com            

Either

x = edu.uptymez.com or edu.uptymez.com 

x = 0.12      or     -2.8

Turning points

 x= -b/ 2a

x = -8/ 2 [3]

x = -8/6

x = -4/3 or -1.3

y = edu.uptymez.com 

y = edu.uptymez.com

y = edu.uptymez.com           

y = edu.uptymez.com

y = -6

Turning points = (-1.3,-6) 

Since a edu.uptymez.com the function has a minimum value therefore  the graph opens upwards

edu.uptymez.com

D) Cubic function

Is a function of a form f (x) = ax3 + bx2 – (x + d) where a, b, c and d are real numbers

aedu.uptymez.com

Example 

Draw the graphs of f (x) = x3 +1

Solution

x -5 -4 -3 -2 -1 0 1 2 3 4
Y -124 -63 -26 -7 0 1 2 9 28 65

 

edu.uptymez.com

edu.uptymez.com                                                                                                                                                               

Share this post on: