BAM FORM 5 – FUNCTIONS

Share this post on:

E)Rational function

Is the function which can be defined by rational fraction such that both the numerator and denominator are polynomials.

edu.uptymez.com

Where b(x)≠0

b edu.uptymez.com   

Or is the function of the form f(x)edu.uptymez.comwhere a and b are real numbers.

Example

Sketch the graph of

1) f (x) = 1/x

2). f (x) = 1/ x-2

Solution

1)              f ( x ) = 1/x

x -5 -4 -3 -2 -1 0 1 2 3 4
f (x ) 1/5 -1/4 -1/2 -1/3 edu.uptymez.com edu.uptymez.com 1 1/2 1/3 1/4

 

edu.uptymez.com

                                                                                                                                                                                                                                                           edu.uptymez.com                                                                          

Solution

2)           f( x) = 1/x -2

   x -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
  f(x)        f edu.uptymez.com  edu.uptymez.com edu.uptymez.com edu.uptymez.com edu.uptymez.com edu.uptymez.com -1 edu.uptymez.com 1 ½ 1/3 1/4 1/5 1/6 1/7

 

edu.uptymez.com

                                                                                                                                                                                                                                                            edu.uptymez.com                                                        

NOTE:

The point where the function is not defined is called the a asymptote

Exercise

Draw the graphs of the following functions

i.)      f( x)= -8 – x3

ii.)     f(x) = 9 – x –x2– x3

iii.)    f(x) = x3 – 3x2 +3

iv.)    f(x) = 8 – 3x3

v.)     f(x) = 2/x-1

vi.)    f(x) = 6/ x-6

vii.)   f(x) =1 / x+3

viii.)  f(x) = 5/ x+1

 Solution

 F (x) = -8 – x3

x -4 -3 -2 -1 0 1 2 3 4
f [x] 56 19 0 -7 -8 -9 -16 -35 -72

 

edu.uptymez.com

                                                                                                                                                                                                                                           edu.uptymez.com

Sketching graphs by using intercepts and asymptotes

Example

Sketch the graph of

 y = edu.uptymez.com

Steps

1) Find the vertical and horizontal asymptotes

2) Draw the asymptotes on the xy plane by using dotted lines except when they coincide    with the axes

3) Test the neighborhood points of the asymptotes to get the direction of the graph

4) Find the intercept [x – intercept and y – intercepts]

5) Join the arrows / points by using a free hand

 Solution

Vertical asymptote

Set     x – 4 = 0

          x = 4

Vertical asymptote is the line where x = 4

Horizontal asymptote

 Make x subject

  y = edu.uptymez.com

        y[x – 4] = x

       yx – 4y = x

       yx – x = 4y

       x [y – 1] = 4y

       x = 4y / y – 1

Set

y – 1= 0

y = 1

edu.uptymez.comHorizontal asymptote is the line where y = 1

y = intercept = 0

x – Intercept = 0
edu.uptymez.com

Exercise

Sketch the graphs of the following functions by using intercept and asymptotes

        1)     y = edu.uptymez.com  

             2)     y = edu.uptymez.com

            3)     y = edu.uptymez.com

            4)     y = edu.uptymez.com

 5)  y = edu.uptymez.com

Solution

y =  edu.uptymez.com

Vertical asymptote

Set x – 3= 0

          X = 3

Vertical asymptote of the line where x = 3

Horizontal asymptote

Set x subject

y = edu.uptymez.com

y [x -3]= x

      yx – 3y = x

      yx – x = 3y

edu.uptymez.com 

y =  edu.uptymez.com 

Set y -1 = 0

           y = 1

edu.uptymez.comHorizontal asymptote is the line where y = 1

y – Intercept = 0

x – Intercept = 0

  x = 1

  2x – 2     

Solution

Vertical asymptote

      Set 2x-2 = 0

edu.uptymez.com=edu.uptymez.com

x = 1

Horizontal asymptote

     Make x the subject

y = edu.uptymez.com

edu.uptymez.com 

edu.uptymez.com 

      edu.uptymez.com 

 

Share this post on: