ADVANCED MATHEMATICS FORM 6 – HYPERBOLIC FUNCTION

Share this post on:


OSBORN’S RULE

This is the rule used to change the trigonometrical identification into corresponding analogous hyperbolic identities.

Osborn’s rule states that “whenever a product of two series occurs change the sign of that term “

Examples

1.   Change the identity edu.uptymez.com into analogous hyperbolic identity

Solution

 edu.uptymez.com
edu.uptymez.com

2.   Write the analogous hyperbolic identity for edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com

3.   Change edu.uptymez.com into a corresponding hyperbolic identity

Solution

edu.uptymez.com
edu.uptymez.com 

INVERSE OF HYPERBOLIC FUNCTION

The inverse of edu.uptymez.com or edu.uptymez.com 

The inverse of edu.uptymez.com is denoted by edu.uptymez.com 

The inverse of edu.uptymez.com is denoted by edu.uptymez.com 

GRAPHS OF INVERSE OF HYPERBOLIC FUNCTIONS

The graph of the inverse of hyperbolic functions is a reflection of graphs of hyperbolic function on the inverse of y = x

     (a)  edu.uptymez.com
edu.uptymez.com

     (b)  edu.uptymez.com

Concept:

y = edu.uptymez.com is not one to one function in such a way it  can’t have inverse without restriction otherwise its inverse will not be a function but just a relation.   For y =edu.uptymez.com to be a function the domain of y =edu.uptymez.com  should be restricted such that domain is edu.uptymez.com
edu.uptymez.com

(c)  edu.uptymez.com
edu.uptymez.com

     (d)  For y =edu.uptymez.com it is defined by only for -1 < x < 1

EXPRESSION OFedu.uptymez.com IN LOGARITHMIC FORM

(    a)  edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

   edu.uptymez.com

(b  b)   edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

This is the expression foredu.uptymez.com as just a relation and not a function.
Foredu.uptymez.com  being in function
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
(c    c)   edu.uptymez.com

edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
Examples
1.   (i) edu.uptymez.com
(ii)edu.uptymez.com

Solution (i)

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Solution (ii)
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
2.   Prove that  edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

     3.     If edu.uptymez.com

             Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com     1
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com

     4..    Given that edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com


R- FORMULAE
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

Examples

Find the maximum value of

3 coshx + 2sinh

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

Share this post on: