ADVANCED MATHEMATICS FORM 6 – HYPERBOLIC FUNCTION

Share this post on:


CALCULUS OF HYPERBOLIC FUNCTION

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

All other types of hyperbolic functions are differentiated or integrated by the concept of the above results

Note;

In calculus of the hyperbolic functions of the Osborn’s rule never operated.

Examples

→Differentiate with respect to x

a)    edu.uptymez.com

b)   edu.uptymez.com

Solution (a)

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com    

edu.uptymez.com
edu.uptymez.com

→Differentiate

a)    edu.uptymez.com

b)   edu.uptymez.com

Solution (b)

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

edu.uptymez.com

→Evaluate edu.uptymez.com
solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

→ Evaluate edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

→Evaluate  edu.uptymez.com

Solution

  edu.uptymez.com

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

    →edu.uptymez.com

Solution

edu.uptymez.com
edu.uptymez.com
edu.uptymez.com
edu.uptymez.com

QUESTIONS

1)   Express edu.uptymez.com and edu.uptymez.com into exponential form and hence solve edu.uptymez.com 
2)   Given that  edu.uptymez.com. Show that  edu.uptymez.com 
3)   Prove that edu.uptymez.com
4)   Solve for real values  of x. edu.uptymez.com 
5)   Prove that   edu.uptymez.com

6)     (a) If  edu.uptymez.com, prove that edu.uptymez.com
(b
) use the result in (a) to solve the equation edu.uptymez.com

 7)    If edu.uptymez.com find edu.uptymez.com and edu.uptymez.com and hence show that edu.uptymez.com
 8)    Prove that  edu.uptymez.com
 9)    If edu.uptymez.comProve the fact that edu.uptymez.com
10)
    Find the coordinates of the point of intersection of the graph edu.uptymez.com and edu.uptymez.com

11)     If edu.uptymez.com show that edu.uptymez.com and find the value of edu.uptymez.com
12)    Show that the curve edu.uptymez.com has just one stationary point and find its coordinates and determine its nature.
13)     Prove that edu.uptymez.com
14)   Prove the fact that edu.uptymez.com
15)    Express edu.uptymez.com in logarithmic form hence solve the equation edu.uptymez.com
16)    Show that edu.uptymez.com has only one root and its root is edu.uptymez.com
17)    Show that edu.uptymez.com

 

Share this post on: