BAM FORM 5 – INTEGRATION

Share this post on:

DEFINITE INTEGRAL

The definite integral is given by

edu.uptymez.com

Where    a = is the lower limit

             b = is the upper limit

Note:

The arbitrary constant is not shown in the definite integral

Examples

           1.        edu.uptymez.com

       Solution

          edu.uptymez.com

         edu.uptymez.com

     = edu.uptymez.com – edu.uptymez.com

    = edu.uptymez.com – edu.uptymez.com

    = 31 edu.uptymez.com – 10

    = 21 edu.uptymez.com    

            edu.uptymez.com
2.      edu.uptymez.com

           edu.uptymez.com

edu.uptymez.com

= 8 – 1edu.uptymez.com

= 6edu.uptymez.com

 edu.uptymez.com

EXERCISE

Find the value of

1.      edu.uptymez.com

2.      edu.uptymez.com

3.      edu.uptymez.com

4.      edu.uptymez.com

5.      edu.uptymez.com

Solution

1.          edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com – edu.uptymez.com

(27 – 18 +15) – (8 – 8 + 10)

(27 – 3) – (8 + 2)

= 14

2.          edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com

edu.uptymez.com – 2) – (- edu.uptymez.com –  edu.uptymez.com)

edu.uptymez.com – 2) – (edu.uptymez.com

edu.uptymez.com + 4edu.uptymez.com

= 5edu.uptymez.com

3
.      edu.uptymez.com 

edu.uptymez.com

edu.uptymez.com

( edu.uptymez.com – ( edu.uptymez.com

(8 – 4 + 6) – (1 – 1 + 3)

(8 + 2) – (1+2)

= 7

4.     edu.uptymez.com

        Solution

edu.uptymez.com

(2(2) +edu.uptymez.com) – (2(-3) + 7 edu.uptymez.com )

(4 + 14) – (-6 +edu.uptymez.com)

18 – (25edu.uptymez.com)

= -7edu.uptymez.com

INTEGRATION BY SUBSTITUTION METHOD

Integrate the following with respect to x

1. (3x-8)6

2. 4edu.uptymez.com

3. x edu.uptymez.com

Solution

           1.      edu.uptymez.comdx

Let u = 3x – 8

      du=3dx

             edu.uptymez.comdu = edu.uptymez.com

           edu.uptymez.com edu.uptymez.com edu.uptymez.com

            = edu.uptymez.com edu.uptymez.comdu

            = edu.uptymez.com xedu.uptymez.com edu.uptymez.com + c

            = edu.uptymez.com edu.uptymez.com + c

    2.    edu.uptymez.com dx


Let u = 1-x

      du=-dx

      edu.uptymez.com dx

      Let u = 1 – x

       edu.uptymez.com dx = edu.uptymez.com(- du )

      = -4 edu.uptymez.com du

      = edu.uptymez.com + c

     =-4 x edu.uptymez.com edu.uptymez.com + c

    = edu.uptymez.com edu.uptymez.com + c

    = – edu.uptymez.com edu.uptymez.com + c

   3 edu.uptymez.com

Let u= edu.uptymez.com + 1

      du= 2xdx

      dx = edu.uptymez.com

     edu.uptymez.com edu.uptymez.com = edu.uptymez.com

       = edu.uptymez.com edu.uptymez.comdu

      = edu.uptymez.com x edu.uptymez.com edu.uptymez.com + c

    = edu.uptymez.com edu.uptymez.com + c

     = edu.uptymez.com edu.uptymez.com + c

Exercise

Determine the integral of each of the following

         1.      edu.uptymez.com dx

         2.      edu.uptymez.com dx

         3.      edu.uptymez.comdx

APPLICATION OF INTEGRATION

To determine the area under the curve

Given A is the area bounded by the curve y=f(x) the x -axis and the line x=0 and x=b where b> a

edu.uptymez.com 

edu.uptymez.comThe area under that curve is given by the define definite integral of f(x) from a to b

edu.uptymez.com

          = f (b) – f (a)

Examples

1. Find the area under the curve f(x) =x2+1 from x=0 to x=2

2. Find the area under the curve f(x) = edu.uptymez.comfrom x=1 to x=2

3. Find the area bounded by the function f(x) =x 2-3, x=0, x=5 and the x- axis

Solution

1.      f(x) = edu.uptymez.com + 1

      y intercept=1

edu.uptymez.com

A = edu.uptymez.comdx

    = edu.uptymez.com

    = (edu.uptymez.com edu.uptymez.com) – (edu.uptymez.com + 0)

    = (edu.uptymez.com + 2) – (0)

    = 4edu.uptymez.com or edu.uptymez.com sq. units

2.      f(x)= edu.uptymez.com

edu.uptymez.com

A = edu.uptymez.com

   = edu.uptymez.com

= edu.uptymez.com

= edu.uptymez.com = edu.uptymez.com

= edu.uptymez.com  sq.units

3.      f(x) = x2-3

Where:  y intercept =-3

             X intercept =edu.uptymez.com and x=edu.uptymez.com

edu.uptymez.com

A = A1+A2

=edu.uptymez.com +  edu.uptymez.com

= edu.uptymez.com + edu.uptymez.com

= edu.uptymez.com –  edu.uptymez.com + edu.uptymez.com

= edu.uptymez.com + edu.uptymez.com

= 2edu.uptymez.com + edu.uptymez.com

= 6edu.uptymez.com + edu.uptymez.com + 6edu.uptymez.com 

= 12edu.uptymez.com + 80 sq.units

EXERCISE

1.      Find the area between y = 7-x2  and the x- axis from x= -1 to x=2

2.      Find the area between the graph of y=x2 x – 2 and the x- axis from x= -2 to x=3

Solution

1.        y =7-x2

Where y- intercept =7

             X- Intercept =edu.uptymez.com

edu.uptymez.com

A = A1+A2

= edu.uptymez.com + edu.uptymez.com

= edu.uptymez.com + edu.uptymez.com

= (+6.67) + (11.3 – 0)

= + 6.67 + 11.3

=17.97 sq units

Volume of the Solids of Revolution

The volume,V of the solid of revolution is obtained by revolving the shaded portion under the curve, y= f(x) from x= a to x =b about the x -axis is given by

edu.uptymez.com
similarly, when the region is rotated about y- axis from y =a to y=b we shall have obtained the volume, V by
.edu.uptymez.com
Example 1

Find the volume of revolution by the curve y=x2 from x=0 to x=2 given that the rotation is done about the the x- axis
                                                                                                           
                                                                                                              
                                         edu.uptymez.com
edu.uptymez.com
but y=x2

edu.uptymez.com
=edu.uptymez.com
=edu.uptymez.com

 .edu.uptymez.com
Exercise

  1. Find the volume obtained when each of the regions is rotated about the x – axis.

  a) Under  y= x3, from x =0 to x=1
  b) Under y2= 4-x, from x=0 to x=2
  c)Under y= x2, from x=1 to x=2
  d)Under y= √x, from x=1 to x=4

2. Find the volume obtained when each of the region is rotated about the y-axis.
a) Under y= x2, and the y-axis from x=0 to x=2
b) Under y= x3, and the y-axis from y=1 to y=8
c) Under y= √x, and the y-axis from y=1 to y=2

.

Share this post on: